MIT OpenCourseWare
http://ocw.mit.edu

18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Solution for 18.112 ps 1

1(Prob1 on P11).

Solution:

$$
\begin{aligned}
|a|<1,|b|<1 & \Longrightarrow(1-a \bar{a})(1-b \bar{b})<1 \\
& \Longrightarrow 1-a \bar{a}-b \bar{b}+a \bar{a} b \bar{b}<1 \\
& \Longrightarrow 1+a \bar{a} b \bar{b}-a \bar{b}-\bar{a} b>a \bar{a}+b \bar{b}-a \bar{b}-\bar{a} b \\
& \Longrightarrow(1-a \bar{b})(1-\bar{a} b)>(a-b)(\bar{a}-\bar{b}) \\
& \Longrightarrow\left|\frac{a-b}{1-\bar{a} b}\right|<1 .
\end{aligned}
$$

2(Prob4 on P11).

Solution:

- If there is a solution, then

$$
\begin{aligned}
2|c| & =|z-a|+|z+a| \\
& \geq|(z-a)-(z+a)| \\
& =2|a|,
\end{aligned}
$$

i.e.

$$
|c| \geq|a| .
$$

On the other hand, if

$$
|c| \geq|a|,
$$

take

$$
z_{0}=\frac{|c|}{|a|} a,
$$

then it is easy to check that z_{0} is a solution. Thus the largest value of $|z|$ is $|c|$, with corresponding $z=z_{0}$.

- Use fundamental inequality and formula (8) on page 8, we can get

$$
\begin{aligned}
4|c|^{2} & =(|z+a|+|z-a|)^{2} \\
& \leq 2\left(|z+a|^{2}+|z-a|^{2}\right) \\
& =4\left(|z|^{2}+|a|^{2}\right) \\
\Longrightarrow|z| & \geq \sqrt{|c|^{2}-|a|^{2}},
\end{aligned}
$$

which can be obtained with

$$
z=i \frac{\sqrt{|c|^{2}-|a|^{2}}}{|a|} a .
$$

N.B. Geometrically,

$$
|z-a|+|z+a|=2|c|
$$

represents a ellipse, with long axis $|c|$ and focus a. So the short axis is

$$
\sqrt{|c|^{2}-|a|^{2}}
$$

and thus

$$
\sqrt{|c|^{2}-|a|^{2}} \leq|z| \leq|c| .
$$

3(Prob 1 on P17).

Solution: Suppose

$$
a z+b \bar{z}+c=0
$$

is a line, then it has at least two different solutions, say, z_{0}, z_{1}. Thus,

$$
\begin{aligned}
& a z_{0}+b \bar{z}_{0}+c=0, a z_{1}+b \bar{z}_{1}+c=0 \\
\Longrightarrow & a\left(z_{0}-z_{1}\right)=b\left(\bar{z}_{1}-\bar{z}_{0}\right) \\
\Longrightarrow & |a|=|b| .
\end{aligned}
$$

Thus

$$
a \neq 0
$$

and there is a θ such that

$$
b=a e^{i \theta}
$$

So

$$
\begin{aligned}
& a z+b \bar{z}+c=0 \\
\Longleftrightarrow & a z+a e^{i \theta} \bar{z}+c=0 \\
\Longleftrightarrow & z+e^{i \theta} \bar{z}+c / a=0 \\
\Longleftrightarrow & e^{-i \frac{\theta}{2}} z+\overline{e^{-i \frac{\theta}{2}} z}+e^{-i \frac{\theta}{2}} c / a=0 .
\end{aligned}
$$

This equation has solution if and only if

$$
e^{-i \frac{\theta}{2}} c / a \in \mathbb{R},
$$

in which case the equation does represent a line, given by

$$
2 \operatorname{Re}\left(e^{-i \frac{\theta}{2}} z\right)=-e^{-i \frac{\theta}{2}} c / a
$$

Note that

$$
\begin{aligned}
& e^{-i \frac{\theta}{2}} c / a \in \mathbb{R} \\
& \Longleftrightarrow e^{-i \frac{\theta}{2}} c / a=\overline{e^{-i \frac{\theta}{2}} c / a} \\
& \Longleftrightarrow c /\left(a e^{i \theta}\right)=\overline{c / a} \\
& \Longleftrightarrow c / b=\overline{c / a} .
\end{aligned}
$$

So the condition in form of a, b, c is

$$
|a|=|b| \quad \text { and } \quad c / b=\overline{c / a} .
$$

$4($ Prob 5 on P17).(We need to suppose $|a| \neq 1$.)
Solution: Let P, Q be the points on the plane corresponding to a and $1 / \bar{a}$. By

$$
\frac{1}{\bar{a}}=\frac{a}{|a|^{2}}
$$

we know that O, P, Q are on the same line. Suppose the circle intersect the unit circle at points R, S.(They Do intersect at two points!) Then

$$
|\overrightarrow{O R}|^{2}=1=|a||1 / \bar{a}|=|\overrightarrow{O P}||\overrightarrow{O Q}|
$$

By elementary planar geometry, $\overrightarrow{O R}$ tangent to the circle through P, Q, i.e. the radii to the point of intersection are perpendicular. So the two circles intersect at right angle.

