The Golden Ratio

Agustinus Peter Sahanggamu

November 30, 2006

Outline

$>$ Geometric Definition
$>$ Relation with Fibonacci Numbers
>Euclidean Geometric Construction
>Continuous Fraction Representation

Geometric Definition (Mean and Extreme Ratio)

$>x$ satisfies

$$
x^{2}-x-1=0
$$

$>$ Golden ratio $=$ positive root $=\tau=\frac{1+\sqrt{5}}{2}$
$>$ Negative root $=1-\tau=\mu=\frac{1-\sqrt{5}}{2}$

Relation with Fibonacci Numbers

$>$ Binet's Formula

$$
\begin{gathered}
f_{n}=\left(\tau^{n}-\mu^{n}\right) / \sqrt{5} \\
>f_{n+1} \\
f_{n} \\
> \\
>\tau=\lim _{n \rightarrow \infty} \frac{\tau_{n+1}-\mu^{n+1}}{\tau^{n}-\mu^{n}} \\
f_{n} \\
\text { since }|\tau / \mu|>1
\end{gathered}
$$

Geometric Construction

>Construct a right triangle with sides $\frac{1}{2}$ and 1
>Add the hypotenuse and shortest side

Continuous Fraction

 Representation$$
\tau=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}
$$ and $u_{1}=1$

Let $u_{n}=a_{n+1} / a_{n}$ with $a_{1}=a_{2}=1$
$>$ Recursion of a_{n} is $a_{n+2}=a_{n+1}+a_{n}$
$>\left\{a_{n}\right\}=$ Fibonacci numbers

Infinite Resistor Network

>Each resistor has resistance 1Ω

$>$ Total resistance $=r=$?
>Recall

Total $=a+b$

Total $=\frac{a b}{a+b}$

Infinite Resistor Network (continued)

$$
\begin{gathered}
r_{n+1} \\
r_{n+1}=1+\frac{1}{1+\frac{1}{r_{n}}} \\
r=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}=\tau
\end{gathered}
$$

Exercise on Continued Fractions (Young, Problem 9, page 156)

b

$>$ Find $p=2 a+$

$$
\overline{2 a+\frac{b}{2 a+\cdots}}
$$

with a, b positive integers
$>p=\lim _{n \rightarrow \infty} p_{n}$ with $p_{1}=2 a$ and

$$
p_{n+1}=2 a+\frac{b}{p_{n}}
$$

$>$ Define

$$
p_{n}=u_{n+1} / u_{n}, u_{1}=1, u_{2}=2 a
$$

Exercise on Continued Fractions (continued)

$$
u_{n+2}-2 a u_{n+1}-b u_{n}=0
$$

>Basis of solutions: $u_{n}=\lambda^{n}$

$$
\lambda^{2}-2 a \lambda-b=0
$$

$>\alpha=a+\sqrt{a^{2}+b}, \beta=a-\sqrt{a^{2}+b}$
$>$ Note $|\beta|<a+\sqrt{a^{2}+b}=\alpha$
$>$ General solution $u_{n}=c \alpha^{n}+d \beta^{n}$

$$
>u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\left(\text { matching } u_{1} \text { and } u_{2}\right)
$$

Young, Problem 20, page 136

$>$ For any four consecutive Fibonacci
numbers $f_{n-1}, f_{n}, f_{n+1}, f_{n+2}$ show that $f_{n-1} f_{n+2}$ and $2 f_{n} f_{n+1}$ form two shortest sides of a Pythagorean triangle.
$>$ Write $f_{n}=b$ and $f_{n+1}=a, a>b$

$$
\begin{gathered}
a-b, b, a, a+b \\
>x=a^{2}-b^{2}, y=2 a b \\
>x^{2}+y^{2}=z^{2}, z=a^{2}+b^{2}
\end{gathered}
$$

Young, Problem 20, page 136 (continued)

$>$ Hypotenuse $z=f_{n}^{2}+f_{n+1}^{2}$
>From previous class,

$$
f_{n}^{2}+f_{n+1}^{2}=f_{2 n+1}
$$

$>$ How is the area related to the original four numbers?
$A=x y / 2=f_{n-1} f_{n} f_{n+1} f_{n+2}$
Product of four consecutive Fibonacci numbers is the area of a Pythagorean triangle

