Twin Prime Conjecture

-Introduction
-Mertens’ Theorems
-Brun’s Conjecture
-Exercises

Introduction

"Twin Prime" - Paul Stackel, 1880s
$\{p, p+2\}$ equivalently, $\{6 n+1,6 n-1\}$:

$$
\begin{gathered}
6 x+0=/=\text { prime }=6 x \\
6 x+1=\text { prime }
\end{gathered}
$$

$$
6 x+2=/=\text { prime }=2(3 x+1)
$$

$$
6 x+3=/=\text { prime }=3(2 x+1)
$$

$$
6 x+4=/=\text { prime }=2(3 x+2)
$$

$$
6 x+5=\text { prime }=6 y-1
$$

The Prime Counting Function and the Twin Prime Constant

Twin Prime Counting Function:
Prime Counting Function

$$
\pi(x)=\{N(p) \mid p \leqq x\}
$$

$$
\pi_{2}(x) \leqq c \Pi_{2} \frac{x}{(\ln (x))^{2}}\left[1+O\left(\frac{\ln (\ln (x))}{\ln (x)}\right)\right]
$$

Formulated by Mertens
Twin Prime Constant

$$
\Pi_{2}:=\Pi\left(1-\frac{1}{\left.g_{p}-1\right)^{2}}\right)
$$

$$
\pi_{2}(x) \sim 2 \Pi_{2} \int_{2}^{x} \frac{d x}{(\ln (x))^{2}}
$$

Formulated by Hardy and Littlewood

Mertens' Theorems

Mertens Theorem 1:

For any real number $x \geq 1$,

$$
0 \leq \sum_{n \leq x} \ln \left(\frac{x}{n}\right)<x .
$$

The function $f(t)=\ln \left(\frac{x}{t}\right)$ is decreasing on the interval $[1, x]$, so

$$
\sum_{1 \leq n \leq x} \ln \left(\frac{x}{n}\right)<\ln (x)+\int_{1}^{x} \ln \left(\frac{x}{t}\right) d t
$$

We can rewrite the right-hand side of the inequality as the following:

$$
\ln (x)+\int_{1}^{x} \ln \left(\frac{x}{t}\right) d t=x \ln (x)-\int_{1}^{x} \ln (t) d t .
$$

Similarly, we can rewrite this:

$$
x \ln (x)-\int_{1}^{x} \ln (t) d t=x \ln (x)-(x \ln (x)-x+1)<x .
$$

Mertens' Second Theorem

For Mertens' second theorem, we introduce the Von Mangoldt's function, $\Lambda(n)$, where

$$
\Lambda(n)=\ln (p) \text { if } n=p^{m} \text { is a prime power, and zero otherwise. }
$$

Then the psi function of the prime number theorem is defined as follows

$$
\Psi(x)=\sum_{1 \leq m \leq x} \Lambda(m)
$$

Mertens Theorem 2:
For any real number $x \geq 1$,

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\ln (x)+O(1)
$$

Proof:
Let $N=[x]$. Then

$$
\begin{gathered}
0 \leq \sum_{n \leq x} \ln \left(\frac{x}{n}\right)=N \ln (x)-\sum_{n=1}^{N} \ln (n)=x \ln (x)-\ln (N!)+O(\ln (x))<x \\
\ln (N!)=x \ln (x)+O(x)
\end{gathered}
$$

Let $v_{p}(n)$ denote the highest power of p, a prime, that divides n.

$$
\ln (N!)=\sum_{p \leq N} v_{p}(N) \ln (p)
$$

We can rewrite this as a single summation, by combining the limits on p and k :

$$
\begin{gathered}
\ln (N!)=\sum_{p \leq N} \sum_{k=1}^{\left[\frac{\ln (N)}{\ln (p)}\right]}\left[\frac{N}{p^{k}}\right] \ln (p) . \\
\ln (x!)=\sum_{n \leq x}\left[\frac{x}{n}\right] \Lambda(n) \\
\ln (x!)=\sum_{n \leq x}\left(\frac{x}{n}+O(1)\right) \Lambda(n) .
\end{gathered}
$$

$$
\ln (x!)=\sum_{n \leq x}\left(\frac{x}{n}+O(1)\right) \Lambda(n)
$$

We can distribute this term, forming two sums, one in the error term:

$$
\ln (x!)=x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O\left(\sum_{n \leq x} \Lambda(n)\right)
$$

Now we can substitute in the Psi function defined earlier:

$$
\ln (x!)=x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O(\Psi(x))
$$

Since the Psi function is of the same order as a linear function in x, we can replace it in the error term, obtaining the following:

$$
\ln (x!)=x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O(x)
$$

Therefore,

$$
\begin{gathered}
x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O(x)=x \ln (x)+O(x) \\
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\ln (x)+O(1)
\end{gathered}
$$

Mertens Theorem 3:

For any real number $x \geq 1$,

$$
\sum_{p \leq x} \frac{\ln (p)}{p}=\ln (x)+O(1)
$$

Proof:
From the previous theorem,

$$
\begin{aligned}
0 \leq & \sum_{n \leq x} \frac{\Lambda(n)}{n}-\sum_{p \leq x} \frac{\ln (p)}{p}=\sum_{p^{k} \leq x, k \geq 2} \frac{\ln (p)}{p^{k}} \\
& \leq \sum_{p \leq x} \ln (p) \sum_{k=2}^{\infty} \frac{a}{p^{k}} \leq \sum_{p \leq x} \frac{\ln (p)}{p(p-1)} \\
& \leq 2 \sum_{p \leq x} \frac{\ln (p)}{p^{2}} \leq 2 \sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}=O(1)
\end{aligned}
$$

It then follows from the previous theorem that

$$
\sum_{p \leq x} \frac{\ln (p)}{p}=\sum_{n \leq x} \frac{\Lambda(n)}{n}+O(1)=\ln (x)+O(1)
$$

Mertens' Theorem 4:
There exists a constant $b_{1}>0$ such that

$$
\sum_{p \leq x} \frac{1}{p}=\ln (\ln (x))+b_{1}+O\left(\frac{1}{\ln (x)}\right), x \geq 2
$$

This shows that the sum of reciprocals of primes diverge, whereas the reciprocals of twin primes converge

We can write

$$
\sum_{p \leq x} \frac{1}{p}=\sum_{p \leq x} \frac{\ln (p)}{p} \frac{1}{\ln (p)}=\sum_{n \leq x} u(n) f(n)
$$

where $u(n)=\frac{\ln (p)}{p}$ if $n=p$, and 0 otherwise, and $f(t)=\frac{1}{\ln (t)}$.

$$
\text { Let } \quad U(t)=\sum_{n \leq t} u(n)=\sum_{p \leq t} \frac{\ln (p)}{p}=\ln (t)+g(t)
$$

Then $\mathrm{U}(\mathrm{t})=0$ for $\mathrm{t}<2$ and $\mathrm{g}(\mathrm{t})=\mathrm{O}(1)$ by our assumption

$$
\int_{x}^{\infty} \frac{g(t) d t}{t(\ln (t))^{2}}=O\left(\frac{1}{\ln (x)}\right)
$$

$$
\sum_{p \leq x} \frac{1}{p}=\sum_{n \leq x} u(n) f(n)=\frac{1}{2}+\int_{2}^{x} f(t) d U(t)
$$

Integrating by parts, we obtain the following:

$$
\frac{1}{2}+\int_{2}^{x} f(t) d U(t)=f(x) U(x)-\int_{2}^{x} U(t) d f(t)=\frac{\ln (x)+g(x)}{\ln (x)}-\int_{2}^{x} U(t) f^{\prime}(t) d t
$$

Now we can simplify the term outside the integral, and substitute in for $U(t)$:

$$
\frac{1}{2}+\int_{2}^{x} f(t) d U(t)=1+O\left(\frac{1}{\ln (x)}\right)+\int_{2}^{x} \frac{\ln (t)+g(t)}{t(\ln (t))^{2}} d t
$$

We can split the integral in order to simplify the result:

$$
\frac{1}{2}+\int_{2}^{x} f(t) d U(t)=\int_{2}^{x} \frac{1}{t \ln (t)} d t+\int_{2}^{\infty} \frac{g(t)}{t(\ln (t))^{2}} d t-\int_{x}^{\infty} \frac{g(t)}{t(\ln (t))^{2}} d t+1+O\left(\frac{1}{\ln (x)}\right)
$$

Now we can evaluate two of the integrals:

$$
\int_{2}^{x} \frac{1}{t \ln (t)} d t+\int_{2}^{\infty} \frac{g(t)}{t(\ln (t))^{2}} d t=\ln (\ln (x))-\ln (\ln (2))
$$

Finally, we can simplify this result in terms of a variable b_{1} :

$$
\ln (\ln (x))-\ln (\ln (2))+\int_{2}^{\infty} \frac{g(t)}{t(\ln (t))^{2}} d t+1+O\left(\frac{1}{\ln (x)}\right)=\ln (\ln (x))+b_{1}+O\left(\frac{1}{\ln (x)}\right)
$$

where

$$
b_{1}=1-\ln (\ln (2))+\int_{2}^{\infty} \frac{g(t)}{t(\ln (t))^{2}} d t
$$

Now we not only know that the reciprocals of primes diverge, but that they diverge like the function $\ln (\ln (x))$.

Brun's Conjecture:

Let p_{1}, p_{2}, \ldots be the sequence of prime numbers p such that $p+2$ is also prime. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{1}{p_{n}}+\frac{1}{p_{n}+2}\right)=\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{11}+\frac{1}{13}\right)+\ldots<\infty \\
& \pi_{2}(x) \ll \frac{x}{(\ln (x))^{\frac{3}{2}}} \text { for all } x \geq 2 . \quad n=\pi_{2}\left(p_{n}\right)<\frac{p_{n}}{\left(\ln \left(p_{n}\right)\right)^{\frac{3}{2}}} \leq \frac{p_{n}}{(\ln (n))^{\frac{3}{2}}}
\end{aligned}
$$

for $n \geq 2$. Then

$$
\frac{1}{p_{n}}<\frac{1}{n(\ln (n))^{\frac{3}{2}}}
$$

It follows that the series defined above is convergent:

$$
\sum_{n=1}^{\infty} \frac{1}{p_{n}} \leq \frac{1}{3}+\sum_{n=2}^{\infty} \frac{1}{p_{n}} \ll \frac{1}{3}+\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{\frac{3}{2}}}
$$

$$
\pi_{2}(x) \ll \frac{x}{(\ln (x))^{\frac{3}{2}}} \text { for all } x \geq 2
$$

(This result, which we assumed in the last theorem, actually has an involved proof using the Brun Sieve technique)

Fun Exercise: How many primes are in an interval?

We can first evaluate this by using Euler's expression for the prime counting function.

$$
\pi(x+\epsilon x)-\pi(x)=\frac{x+\epsilon x}{\ln (x)+\ln (1+\epsilon)}-\frac{x}{\ln (x)}+O\left(\frac{x}{\ln (x)}\right) .
$$

We can rewrite the right-hand side as

$$
\frac{\epsilon x}{\ln (x)}+O\left(\frac{x}{\ln (x)}\right)
$$

Then if we let $\epsilon=1$,

$$
\pi(2 x)-\pi(x)=\frac{x}{\ln (x)}+O\left(\frac{x}{\ln (x)}\right) \pi(x)
$$

This does not mean that the number of primes in an interval of length n is equal to the number of primes in the sequential interval of length n. Instead, it means that

$$
\pi(2 x)-2 \pi(x)=O(\pi(x))
$$

Conclusion

The infinitude of twin primes has not been proven, but current work by Dan Goldston and Cem Yilidrim is focused on a formula for the interval between two primes:

$$
\Delta=\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\ln \left(p_{n}\right)}=1
$$

