18.103 Fall 2013

Orthonormal Bases

Consider an inner product space V with inner product $\langle f, g\rangle$ and norm

$$
\|f\|^{2}=\langle f, f\rangle
$$

Proposition 1 (Continuity) If $\left\|u_{n}-u\right\| \rightarrow 0$ and $\left\|v_{n}-v\right\| \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\left\|u_{n}\right\| \rightarrow\|u\| ; \quad\left\langle u_{n}, v_{n}\right\rangle \rightarrow\langle u, v\rangle .
$$

Proof. Note first that since $\left\|v_{n}-v\right\| \rightarrow 0$,

$$
\left\|v_{n}\right\| \leq\left\|v_{n}-v\right\|+\|v\| \leq M<\infty
$$

for a constant M independent of n. Therefore, as $n \rightarrow \infty$,

$$
\left|\left\langle u_{n}, v_{n}\right\rangle-\langle u, v\rangle\right|=\left|\left\langle u_{n}-u, v_{n}\right\rangle+\left\langle u, v_{n}-v\right\rangle\right| \leq M\left\|u_{n}-u\right\|+\|u\|\left\|v_{n}-v\right\| \rightarrow 0
$$

In particular, if $u_{n}=v_{n}$, then $\left\|u_{n}\right\|^{2}=\left\langle u_{n}, u_{n}\right\rangle \rightarrow\langle u, u\rangle=\|u\|^{2}$.
For u and v in V we say that u is perpendicular to v and write $u \perp v$ if $\langle u, v\rangle=0$. The Pythogorean theorem says that if $u \perp v$, then

$$
\begin{equation*}
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} \tag{1}
\end{equation*}
$$

Definition $1 \varphi_{n}$ is called an orthonormal sequence, $n=1,2, \ldots$, if $\left\langle\varphi_{n}, \varphi_{m}\right\rangle=0$ for $n \neq m$ and $\left\langle\varphi_{n}, \varphi_{n}\right\rangle=\left\|\varphi_{n}\right\|^{2}=1$.

Suppose that φ_{n} is an orthonormal sequence in an inner product space V. The following four consequences of the Pythagorean theorem (1) were proved in class (and are also in the text):

If $h=\sum_{n=1}^{N} a_{n} \varphi_{n}$, then

$$
\begin{equation*}
\|h\|^{2}=\sum_{1}^{N}\left|a_{n}\right|^{2} . \tag{2}
\end{equation*}
$$

If $f \in V$ and $s_{N}=\sum_{n=1}^{N}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}$, then

$$
\begin{equation*}
\|f\|^{2}=\left\|f-s_{N}\right\|^{2}+\left\|s_{N}\right\|^{2} \tag{3}
\end{equation*}
$$

If $V_{N}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}$, then

$$
\begin{equation*}
\left\|f-s_{N}\right\|=\min _{g \in V_{N}}\|f-g\| \quad \text { (best approximation property) } \tag{4}
\end{equation*}
$$

If $c_{n}=\left\langle f, \varphi_{n}\right\rangle$, then

$$
\begin{equation*}
\|f\|^{2} \geq \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \quad \text { (Bessel's inequality). } \tag{5}
\end{equation*}
$$

Definition 2 A Hilbert space is defined as a complete inner product space (under the distance $d(u, v)=\|u-v\|)$.

Theorem 1 Suppose that φ_{n} is an orthonormal sequence in a Hilbert space H. Let

$$
V_{N}=\operatorname{span}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}\right\}, \quad V=\bigcup_{N=1}^{\infty} V_{N}
$$

(V is the vector space of finite linear combinations of φ_{n}.) The following are equivalent.
a) V is dense in H (with respect to the distance $d(f, g)=\|f-g\|$),
b) If $f \in H$ and $\left\langle f, \varphi_{n}\right\rangle=0$ for all n, then $f=0$.
c) If $f \in H$ and $s_{N}=\sum_{n=1}^{N}\left\langle f, \varphi_{n}\right\rangle \varphi_{n}$, then $\left\|s_{N}-f\right\| \rightarrow 0$ as $N \rightarrow \infty$.
d) If $f \in H$, then

$$
\|f\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle f, \varphi_{n}\right\rangle\right|^{2}
$$

If the properties of the theorem hold, then $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ is called an orthonormal basis or complete orthonormal system for H. (Note that the word "complete" used here does not mean the same thing as completeness of a metric space.)
Proof. (a) \Longrightarrow (b). Let f satisfy $\left\langle f, \varphi_{n}\right\rangle=0$, then by taking finite linear combinations, $\langle f, v\rangle=0$ for all $v \in V$. Choose a sequence $v_{j} \in V$ so that $\left\|v_{j}-f\right\| \rightarrow 0$ as $j \rightarrow \infty$. Then by Proposition 1 above

$$
0=\left\langle f, v_{j}\right\rangle \rightarrow\langle f, f\rangle \Longrightarrow\|f\|^{2}=0 \Longrightarrow f=0
$$

(b) $\Longrightarrow(\mathrm{c})$. Let $f \in H$ and denote $c_{n}=\left\langle f, \varphi_{n}\right\rangle, s_{N}=\sum_{1}^{N} c_{n} \varphi_{n}$. By Bessel's inequality (5),

$$
\sum_{1}^{\infty}\left|c_{n}\right|^{2} \leq\|f\|^{2}<\infty
$$

Hence, for $M<N$ (using (2))

$$
\left\|s_{N}-s_{M}\right\|^{2}=\left\|\sum_{M+1}^{N} c_{n} \varphi_{n}\right\|^{2}=\sum_{M+1}^{N}\left|c_{n}\right|^{2} \rightarrow 0 \quad \text { as } \quad M, N \rightarrow \infty .
$$

In other words, s_{N} is a Cauchy sequence in H. By completeness of H, there is $u \in H$ such that $\left\|s_{N}-u\right\| \rightarrow 0$ as $N \rightarrow \infty$. Moreover,

$$
\left\langle f-s_{N}, \varphi_{n}\right\rangle=0 \quad \text { for all } N \geq n
$$

Taking the limit as $N \rightarrow \infty$ with n fixed yields

$$
\left\langle f-u, \varphi_{n}\right\rangle=0 \quad \text { for all } n
$$

Therefore by (b), $f-u=0$.
$(\mathrm{c}) \Longrightarrow(\mathrm{d})$. Using (3) and (2),

$$
\|f\|^{2}=\left\|f-s_{N}\right\|^{2}+\left\|s_{N}\right\|^{2}=\left\|f-s_{N}\right\|^{2}+\sum_{1}^{N}\left|c_{n}\right|^{2}, \quad\left(c_{n}=\left\langle f, \varphi_{n}\right\rangle\right)
$$

Take the limit as $N \rightarrow \infty$. By (c), $\left\|f-s_{N}\right\|^{2} \rightarrow 0$. Therefore,

$$
\|f\|^{2}=\sum_{1}^{\infty}\left|c_{n}\right|^{2}
$$

Finally, for $(d) \Longrightarrow$ (a),

$$
\|f\|^{2}=\left\|f-s_{N}\right\|^{2}+\sum_{1}^{N}\left|c_{n}\right|^{2}
$$

Take the limit as $N \rightarrow \infty$, then by (d) the rightmost term tends to $\|f\|^{2}$ so that $\left\|f-s_{N}\right\|^{2} \rightarrow$ 0 . Since $s_{N} \in V_{N} \subset V, V$ is dense in H.

Proposition 2 Let φ_{n} be an orthonormal sequence in a Hilbert space H, and

$$
\sum\left|a_{n}\right|^{2}<\infty, \quad \sum\left|b_{n}\right|^{2}<\infty
$$

then

$$
u=\sum_{n=1}^{\infty} a_{n} \varphi_{n}, \quad v=\sum_{n=1}^{\infty} b_{n} \varphi_{n}
$$

are convergent series in H norm and

$$
\begin{equation*}
\langle u, v\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}} \tag{6}
\end{equation*}
$$

Proof. Let

$$
u_{N}=\sum_{1}^{N} a_{n} \varphi_{n} ; \quad v_{N}=\sum_{1}^{N} b_{n} \varphi_{n}
$$

Then for $M<N$,

$$
\left\|u_{N}-u_{M}\right\|^{2}=\sum_{M}^{N}\left|a_{n}\right|^{2} \rightarrow 0 \quad \text { as } M \rightarrow \infty
$$

so that u_{N} is a Cauchy sequence converging to some $u \in H$. Similarly, $v_{N} \rightarrow v$ in H norm. Finally,

$$
\left\langle u_{N}, v_{N}\right\rangle=\sum_{j, k=1}^{N}\left\langle a_{j} \varphi_{j}, b_{k} \varphi_{k}\right\rangle=\sum_{j, k=1}^{N} a_{j} \overline{b_{k}}\left\langle\varphi_{j}, \varphi_{k}\right\rangle=\sum_{j=1}^{N} a_{j} \overline{b_{j}}
$$

since $\left\langle\varphi_{j}, f_{k}\right\rangle=0$ for $j \neq k$ and $\left\langle f_{j}, f_{j}\right\rangle=1$. Taking the limit as $N \rightarrow \infty$ and using the continuity property (1), $\left\langle u_{N}, v_{N}\right\rangle \rightarrow\langle u, v\rangle$, gives (6).

If H is a Hilbert space and $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis, then every element can be written

$$
f=\sum_{n=1}^{\infty} a_{n} \varphi_{n} \quad(\text { series converges in norm })
$$

The mapping

$$
\left\{a_{n}\right\} \mapsto \sum_{n} a_{n} \varphi_{n}
$$

is a linear isometry from $\ell^{2}(\mathbb{N})$ to H that preserves the inner product. The inverse mapping is

$$
f \mapsto\left\{a_{n}\right\}=\left\{\left\langle f, \varphi_{n}\right\rangle\right\}
$$

It is also useful to know that as soon as a linear mapping between Hilbert spaces is an isometry (preserves norms of vectors) it must also preserve the inner product. Indeed, the inner product function (of two variables u and v) can be written as a function of the norm function (of linear combinations of u and v). This is known as polarization:

Polarization Formula.

$$
\begin{equation*}
\langle u, v\rangle=a_{1}\|u+i v\|^{2}+a_{2}\|u+v\|^{2}+a_{3}\|u\|^{2}+a_{4}\|v\|^{2} \tag{7}
\end{equation*}
$$

with

$$
a_{1}=i / 2, \quad a_{2}=1 / 2, \quad a_{3}=-(1+i) / 2, \quad a_{4}=-(i+1) / 2
$$

Proof.

$$
\begin{aligned}
\|u+i v\|^{2} & =\langle u+i v, u+i v\rangle \\
& =\|u\|^{2}+\langle i v, u\rangle+\langle u, i v\rangle+\|v\|^{2} \\
& =\|u\|^{2}+i(\langle v, u\rangle-\langle u, v\rangle)+\|v\|^{2}
\end{aligned}
$$

Similarly,

$$
\|u+v\|^{2}=\|u\|^{2}+(\langle v, u\rangle+\langle u, v\rangle)+\|v\|^{2}
$$

Multiplying the first equation by i and adding to the second, we find that

$$
i\|u+i v\|^{2}+\|u+v\|^{2}=(i+1)\|u\|^{2}+2\langle u, v\rangle+(i+1)\|v\|^{2}
$$

Solving for $\langle u, v\rangle$ yields (7).

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

