
18.103 Fall 2013

Fourier Series, Continued (part 3)

Proposition 1. If f and g belong to L1(T), then f ∗ g ∈ L1(T) and

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Proof. Fubini’s theorem implies∫
T

(∫
T

|f(x− y)g(y)|dy
)
dx =

∫
T

(∫
T

|f(x− y)|g(y)|dx
)
dy

=

∫
T

2π‖f‖1|g(y)|dy = (2π)2‖f‖1‖g‖1 <∞

It follows that ∫
T

|f(x− y)g(y)|dy <∞ a. e.

For these values of x, f(x− y)g(y) is integrable, and we may define

f ∗ g(x) =
1

2π

∫
T

f(x− y)g(y)dy.

Moreover,

‖f ∗ g‖1 =
1

2π

∫
T

|f ∗ g(x)|dx =
1

2π

∫
T

∣∣∣∣ 1

2π

∫
T

f(x− y)g(y)dy

∣∣∣∣ dx
≤ 1

(2π)2

∫
T

∫
T

|f(x− y)g(y)|dy dx = ‖f‖1‖g‖1.

Exercise. Show that for f ∈ L∞(T) and g ∈ L1(T), f ∗ g(x) is defined for every x and

‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖1.

Deduce, using a density argument, that f ∗ g is continuous. 1

1Recall that the space L∞(X,µ) is defined as the set of measurable functions for which the norm

‖f‖∞ := esssupx∈X |f(x)|
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Next, we introduce an operator notation for the Cesáro means of the Fourier series:

σNf(x) =
N∑

n=−N

(
1− |n|

N

)
f̂(n)einx = f ∗ FN(x),

with FN the Fejér kernel. Notice that this is a linear operation, σN(af + bg) = aσNf + bσNg
for complex numbers a and b.

Theorem 1. Let f ∈ L1(T). Then

lim
N→∞

‖f − σNf‖1 = 0

In particular, trigonometric polynomials are dense in L1(T).

Proof. Take ε > 0 and choose g ∈ C(T) such that

‖f − g‖1 ≤ ε

Then
‖σNf − f‖1 ≤ ‖σNf − σNg‖1 + ‖σNg − g‖1 + ‖g − f‖1, (1)

and Proposition 1 implies

‖σNf − σNg‖1 = ‖σN(f − g)‖1 = ‖(f − g) ∗ FN‖1 ≤ ‖f − g‖1‖FN‖1 = ‖f − g‖1 ≤ ε

Therefore, implies
‖σNf − f‖1 ≤ 2ε+ ‖σNg − g‖1

The main theorem from the preceding lecture was

max
x
|g(x)− σNg(x)| → 0 as N →∞

This is the same as saying ‖g − σNg‖∞ → 0. For any function h,

‖h‖1 =
1

2π

∫ π

−π
|h(x)|dx ≤ 1

2π

∫ π

−π
esssupx |h|dx = ‖h‖∞

is finite. The essential supremum is defined by

esssupx∈X f(x) = inf{sup
E
f : µ(X \ E) = 0}

As with the other Lp spaces, we consider two functions in L∞(X,µ) to be equivalent if they are equal except
on a set of measure zero.
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It follows that as N →∞,

‖g − σNg‖1 ≤ ‖g − σNg‖∞ → 0

Thus,
lim
N→∞

‖σNf − f‖1 ≤ 2ε

and since ε > 0 was arbitrary, we have proved the theorem.

Corollary 1. (Uniqueness of Fourier Series) If f ∈ L1(T) and f̂(n) = 0 for all n, then
f(x) = 0 for almost every x.

Proof. By the theorem, ‖σNf − f‖1 → 0 as N → ∞. But the fact that f̂(n) = 0 for all n
implies σNf ≡ 0 for all N , so we have ‖f‖1 = 0.

Further Results. We mention without proof several negative and positive results about
convergence that we won’t have time to prove in this class. To state these, we will also use
operator notation for the partial sums sN(x) as follows.

SNf(x) :=
N∑

n=−N

f̂(n)einx = f ∗DN(x)

where DN is the Dirichlet kernel.

1. There exists f ∈ C(T) such that SNf(0)→∞ as N →∞. (Pointwise convergence of
SNf can fail for continuous functions.)

2. There exists f ∈ L1(T) such that ‖SNf‖1 → ∞ as N → ∞. (Norm convergence of
SNf can fail for L1 functions.)

3. On the other hand, if f ∈ Lp(T) for some p, 1 < p <∞, then

‖SNf − f‖p → 0, N →∞.

(Norm convergence of SNf succeeds for Lp functions, 1 < p <∞. The main step in the proof
is a theorem of Marcel Riesz that ‖SNf‖p ≤ Cp‖f‖p, independent of N . In this class, we will
only prove the weaker statement that this works for σNf . This depends on the inequality
‖σNf‖p ≤ ‖f‖p which is relatively easy.)

4. If f ∈ Lp(T) for some p, p ≥ 1, then

lim
N→∞

σNf(x) = f(x), a. e. x.
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(Pointwise convergence of σNf succeeds for Lp functions, for all p ≥ 1. This follows from
what are known as maximal function estimates. This type of estimate also plays the central
in what is known as the Lebesgue differentiation theorem, which says that the fundamental
theorem of calculus works for integrals of L1 functions.)

5. If f ∈ Lp(T) for some p, 1 < p <∞, then

lim
N→∞

SNf(x) = f(x), a. e. x.

This last result is due to Lennart Carleson (1965) for p ≥ 2 and to Richard Hunt (1967) for
1 < p < 2, and the proof is difficult.

Rather than prove these more detailed results about ordinary and Cesáro convergence,
we prefer to talk about applications. The text by Stein and Shakarchi features two lovely,
illustrative applications of Fourier analysis, which we now present. They are a proof of the
isoperimetric inequality and a proof of Weyl’s equidistribution theorem.

Applications

The fundamental idea motivating Fourier is that differentiation can be understood using
the Fourier basis. The linear operator d/dx can be diagonalized in the basis einx. Formally

d

dx

∑
n

ane
inx =

∑
n

inane
inx

In analogy with finite dimensions, we say that that d/dx is represented by the matrix with
diagonal entries 0, ±i, ±2i, ±3i, etc.2

If one assumes that
∑
|nan| < ∞, then one can justify this formula pointwise for each

x. Here is a Fourier coefficient version of the differentiation formula above.

Proposition 2. If f ∈ C1(R/2πZ), then (proved in class by integration by parts)

f̂ ′(n) = inf̂(n)

2Mathematicians have found that this important formula gives a consistent way to define d/dx even
when differentiation in the ordinary sense does not work and the sums don’t converge in any ordinary sense.
As we will explain later in the class, this formula for d/dx is true in the sense of distributions.
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The formula f̂ ′(n) = inf̂(n) is of central importance, just like its counterpart in summa-
tion form above.

It follows from Proposition 2, that if f ∈ C1(R/2πZ), then continuous function f ′ ∈
C(T) ⊂ L2(T). Hence by our result showing that einx is an orthormal basis of L2(T), f ′ is
represented by its series, and the Parseval formula says

1

2π

∫ π

−π
|f ′(x)|2 dx =

∑
n∈Z

|inf̂(n)|2.

(In particular, the series on the right side is finite.)

Application 1. The Isoperimetric Inequality.

Let D be a region of the plane enclosed by a simple3 C1 curve Γ : (x(t), y(t)). The isoperi-
metric inequality4

A(D) ≤ `(Γ)2/4π

where A(D) denotes the area of D and `(Γ) denotes the length of Γ. Moreover, the case of
equality occurs if and only if Γ is a circle.

The idea is to convert this inequality into one concerning Fourier coefficients of x(t) and
y(t).

We begin with a standard 18.02 formula for area,

A(D) =
1

2

∫
Γ

xdy − ydx,

which follows from Green’s theorem,∫
Γ

Mdx+Ndy =

∫ ∫
D

[(∂N/∂x)− (∂M/∂y)] dxdy

with M = −y/2, N = x/2. Thus

A(D) =
1

2

∫ b

a

[x(t)y′(t)− x′(t)y(t)]dt

3“Simple” means that the curve does not cross itself.
4We follow Stein-Shakarchi, although we treat the C1 case, a bit more general a hypothesis than in that

text.
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Moreover, the length of Γ is given by

`(Γ) =

∫ b

a

√
x′(t)2 + y′(t)2dt.

Step 1. By rescaling, we may assume `(Γ) = 2π. Then our goal is to prove that

A(D) ≤ (2π)2/4π = π

We can also change variables so that the parametrization has unit speed:

x′(t)2 + y′(t)2 = 1

which implies b − a = `(Γ) = 2π. Thus, we may suppose a = −π, b = π and that x(t) and
y(t) are in C1(R/2πZ).

Step 2. Next we relax the constraint from the unit speed condition to the constraint.

1

2π

∫ π

−π
[x′(t)2 + y′(t)2]dt = 1 (2)

In the case x′(t)2 + y′(t)2 = 1, this constraint is obviously true, so if we succeed in proving
A(D) ≤ π under the constraint (2), then we have proved the isoperimetric inequality.

What is less obvious, is why we did this and why we can get away with it. We will answer
these questions before proceeding further. The reason why we did this is that the constraint
on the integral of

√
x′(t)2 + y′(t)2 can’t be written in any useful way in terms of Fourier

coefficients. Neither can the constraint x′(t)2 +y′(t)2 = 1. On the other hand, the constraint
(2) can be rewritten using Parseval’s formula (see Step 3).

There remains the question why we can get away with this relaxation of the constraint.
The answer is that the Cauchy-Schwarz inequality implies

1

2π

∫ π

−π

√
x′(t)2 + y′(t)2dt ≤

(
1

2π

∫ π

−π
(x′(t)2 + y′(t)2)dt

)1/2(
1

2π

∫ π

−π
12 dt

)1/2

= 1

In other words, all curves (x(t), y(t)) satisfying (2) also have length less than or equal to 2π.

It looks peculiar the first time you see it, but replacing L1 norm of the speed |(x′(t), y′(t))|
by the L2 norm is a standard device in the theory of geodesics (curves that minimize the dis-
tance between points in Riemannian manifolds). The curves minimizing the quadratic inte-
gral have constant speed, which has the further advantage of eliminating the non-uniqueness
in the parametric representation of a shortest length curve.
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Step 3. Reformulation in terms of Fourier series.

The Fourier series of x and y are given by

x(t) =
∞∑

n=−∞

ane
int; y(t) =

∞∑
n=−∞

bne
int

Since x and y are real-valued, a−n = an and b−n = bn. Moreover, Proposition 2 says that

x′(t) =
∞∑

n=−∞

inane
int; y′(t) =

∞∑
n=−∞

inbne
int

with convergence in L2 norm. Parseval’s formula implies that (2) can be written

1 = ‖x′‖2 + ‖y′‖2 =
∞∑

n=−∞

|inan|2 + |inbn|2 =
∞∑

n=−∞

n2[|an|2 + |bn|2]

Next, the scalar product formula (polarization of the Parseval formula) implies

〈f, g〉 =
1

2π

∫ π

−π
f(t)g(t) dt =

∞∑
n=−∞

f̂(n)ĝ(n)

Thus,

A(D) =
1

2

∫ π

−π
[x(t)y′(t)− x′(t)y(t)]dt = π[〈x, y′〉 − 〈y, x′〉] = π

∞∑
n=−∞

[aninbn − bninan]

Step 4. Recall that we want to prove that A(D) ≤ π. Note that for real numbers a and b,
2ab ≤ a2 + b2. Thus

|anbn − bnan| ≤ 2|an||bn| ≤ |an|2 + |bn|2

and hence

A(D) ≤ π
∞∑

n=−∞

|aninbn − bninan| ≤ π
∞∑

n=−∞

|n|[|an|2 + |bn|2] ≤ π
∞∑

n=−∞

n2[|an|2 + |bn|2] = π

This ends the proof of the isoperimetric inequality.
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Step 5. It remains to prove that in the case of equality in the isoperimetric inequality, Γ is
a circle. To prove this note that if equality holds, each of the inequalities in the proof is an
equation. The last one says

∞∑
n=−∞

|n|[|an|2 + |bn|2] =
∞∑

n=−∞

n2[|an|2 + |bn|2]

Since |n| < n2 for all |n| ≥ 2, we have |an|2 + |bn|2 = 0 for all |n| ≥ 2. Thus

x(t) = a0 + a1e
it + a1e

−it; y(t) = b0 + b1e
it + b1e

−it;

Moreover,

1 =
1∑

n=−1

n2[|an|2 + |bn|2] = 2|a1|2 + 2|b1|2

Furthermore, a ≥ 0, b ≥ 0,

2ab = a2 + b2 =⇒ (a− b)2 = 0 =⇒ a = b

From this and the equality 2|a1b1| = |a1|2 + |b1|2, we conclude that |a1| = |b1|. Thus,

|a1|2 = |b1|2 = 1/4

Therefore we may write
a1 = eiα/2; b1 = eiβ/2

and
x(t) = a0 + cos(α + t); y(t) = b0 + cos(β + t)

Finally, substitute into the equality

|a1b1 − a1b1| = 2|a1||b1| = 1/2

to find
(1/4)|ei(α−β) − ei(β−α)| = (1/2)| sin(α− β)| = 1/2

Finally, this yields α− β = ±π/2 mod 2π, so that

cos(β + t) = ± sin(α + t)

This finishes the proof that Γ is a unit circle (parametrized counterclockwise or clockwise)
centered at (a0, b0).
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Application 2. Weyl Equidistribution Theorem

For x ∈ R, let {x} denote the fractional part, that is, x − {x} is the largest integer that is
less than or equal to x.

Theorem 2. (Weyl equidistribution theorem) If α is irrational, and 0 ≤ a < b ≤ 1, then

lim
N→∞

#{m : 0 ≤ m ≤ N − 1, a ≤ {mα} ≤ b}
N

= b− a

Proof. The conclusion can be rewritten

lim
N→∞

1

N

N−1∑
m=0

f({mα}) =

∫ 1

0

f(x)dx (3)

with f = 1[a,b]. Extend f to be periodic of period 1. For any ε > 0 there are functions f1

and f2 continuous and periodic of period 1 such that f1 ≤ f ≤ f2 and∫ 1

0

f1(x) ≥ (b− a)− ε;
∫ 1

0

f2(x)dx ≤ (b− a)− ε

Thus if we can prove (3) for f1 and f2 we have

lim sup
N→∞

1

N

N−1∑
m=0

1[a,b]({mα}) ≤ lim
N→∞

1

N

N−1∑
m=0

f2({mα}) =

∫ 1

0

f2(x)dx ≤ (b− 1) + ε

and similarly the liminf is greater than (b − a) − ε. Since ε > 0 is arbitrary, Theorem 2
follows.

To prove (3) for continuous functions with period 1, recall that they can be uniformly
approximated by trigonometric polynomials with period 1. In other words, for ε > 0, and
any continuous periodic f , we can find a trigonometric polyonomial g such that∣∣∣∣∣ 1

N

N−1∑
m=0

f({mα})− 1

N

N−1∑
m=0

g({mα})

∣∣∣∣∣ ≤ max |f − g| ≤ ε.

So it suffices to confirm (3) for trigonometric polynomials, and hence for single exponentials,
f = ϕn(x), with

ϕn(x) = e2πinx, n = 0, ±1, ±2, . . . .
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The case n = 0 is immediate since

1

N

N−1∑
m=0

ϕ0({mα}) =
1

N

N−1∑
m=0

1 = 1 =

∫ 1

0

ϕ0(x) dx.

For n ∈ Z, n 6= 0, we have

ϕn({mα}) = e2πi{mα} = e2πimα = ϕn(mα),

and
1

N

N−1∑
m=0

ϕn({mα}) =
1

N

N−1∑
m=0

e2πinmα =
e2πinNα − 1

N(e2πinα − 1)

Here, we used the fact that α is irrational in order to know that e2πinα − 1 6= 0. Letting N
tend to infinity we see that

lim
N→∞

1

N

N−1∑
m=0

ϕn({mα}) = 0 =

∫ 1

0

e2πinxdx =

∫ 1

0

ϕn(x)dx

Exercise. For x ∈ Rn, denote the fractional parts of its components by

{x} = ({x1}, . . . , {xn}),

(Put another way, {·} : Rn → Rn/Zn is the quotient mapping.) Let R be a rectangle
(multi-interval) in [0, 1]n. Let

α = (α1, . . . , αn)

be such that 1, α1, . . . , αn are linearly independent over Q, the rational numbers. Show
that

lim
N→∞

#{m : 0 ≤ m ≤ N − 1, {mα} ∈ R}
N

= vol(R)

(Hint: Formulate and prove the appropriate density theorem for trigonometric polynomials
on Rn/Zn.)
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