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Fourier Series 2

Recall that if f ∈ L1(T), and we define the partial sum

sN(x) =
N∑

n=−N

f̂(n)einx

then

sN(x) = f ∗DN(x) =
1

2π

∫
T
f(y)DN(x− y) dy

where the Dirichlet kernel DN(x) is defined by

DN(x) =
N∑

n=−N

einx

Recall that if you sum the geometric series, you find the following closed formula.

(1) DN(x) =
ei(N+1)x − e−iNx

eix − 1

Multiplying numerator and denominator by e−ix/2, we obtain a second closed form formula
for DN , namely

(2) DN(x) =
ei(2N+1)x/2 − e−i(2N+1)x/2

eix/2 − e−ix/2
=

sin[(2N + 1)x/2]

sin(x/2)

Taking the limit of the very last expression as x → 0, we find DN(0) = 2N + 1 — a good
double check, consistent with series for DN with 2N + 1 terms, all equal to 1 at x = 0.

It took nearly a century from the time Fourier invented the series in the early 1800s to
the proof of a general theorem about convergence. People got stuck because sN and DN are
hard to work with.

The problem was (and is) that there are “bad” functions f ∈ C(T) such that sN diverges
at some points. There are even uglier functions f ∈ L1(T) for which sN(x) diverges for every
x. Today we won’t discuss these pathologies. We will focus instead on the positive side.

The breakthrough took place in 1904, when L. Fejér showed that trigometric polynomials
approximate all continuous periodic functions uniformly. The idea is to give up, temporarily,
on trying to approximate functions using sN(x) and instead look at the Cesáro means

σN(x) = [s0(x) + · · ·+ sN−1(x)]/N
1
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This new sequence converges more readily, smoothing out some of the oscillations in the
sequence sN(x).

Theorem 1. (Fejér) Let f be continuous on R and periodic of period 2π. Then

max
x
|σN(x)− f(x)| → 0 as N →∞

where
σN(x) = (s0(x) + · · ·+ sN−1(x))/N

An immediate corollary is the density of the finite linear span of the functions einx in
continuous periodic functions.

Corollary 1. Trigonometric polyonomials are dense in continuous, periodic of 2π functions
in the uniform norm.

To prove Fejér’s theorem, we first compute

σN =
1

N
[s0 + · · ·+ sN−1] = f ∗ 1

N

N−1∑
0

DN = f ∗ FN

where

FN(x) =
1

N
(D0 +D1 + · · ·+DN−1)

FN is known as Fejér’s kernel. We claim that

(3) FN(x) =
sin2(Nx/2)

N sin2(x/2)

To prove this, we use the representation (1).

(eix − 1)2NFN(x) = (eix − 1)2

N−1∑
0

Dn(x)

= (eix − 1)

[
N−1∑
n=0

ei(n+1)x −
N−1∑
n=0

e−inx

]
= ei(N+1)x − eix − eix + e−i(N−1)x

= eix[eiNx − 2 + e−iNx] = eix(eiNx/2 − e−iNx/2)2

Therefore

FN(x) =
eix(eiNx/2 − e−iNx/2)2

N(eix − 1)2
=

(eiNx/2 − e−iNx/2)2

N(eix/2 − e−ix/2)2
=

2i sin2(Nx/2)

2iN sin2(x/2)
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Lemma 1. Approximate Identity Lemma. Let f ∈ C(R/2πZ), that is, f is a continuous
function on R such that f(x+ 2π) = f(x). Let KN(x) satisfy

i)
1

2π

∫ π

−π
KN(x)dx = 1

ii) sup
N

∫ π

−π
|KN(x)|dx ≤M

iii) For any δ > 0,

∫
δ≤|x|≤π

|KN(x)|dx→ 0 as N →∞.

Then

max
x
|f(x)− f ∗KN(x)| → 0 as N →∞

Proof. By property (i),

2π[f ∗KN(x)− f(x)] =

∫ π

−π
KN(y)(f(x− y)− f(x))dy

=

∫
δ≤|y|≤π

KN(y)(f(x− y)− f(x))dy

+

∫
|y|<δ

KN(y)(f(x− y)− f(x))dy

For any ε > 0 choose δ > 0 so that |f(x− y)− f(x)| ≤ ε for all |y| ≤ δ. Note that there is
such a δ > 0 that works for all x simultaneously because a continuous function on a compact
set is uniformly continuous.1 Next, by property (iii),∣∣∣∣∫

δ≤|y|≤π
KN(y)(f(x− y)− f(x))dy

∣∣∣∣ ≤ 2 max |f |
∫
δ≤|y|≤π

|KN(y)|dy → 0

as N → ∞. (The right side is independent of x, so the left side tends to zero uniformly in
x.) Finally, using property (ii)∣∣∣∣∫

|y|<δ
KN(y)(f(x− y)− f(x))dy

∣∣∣∣ ≤ ∫
|y|<δ
|KN(y)|εdy ≤Mε

It follows that

lim sup
N→∞

max
x
|f ∗KN(x)− f(x)| ≤Mε/2π

1We need this uniform continuity on a larger compact interval than −π ≤ x− y ≤ π. It is this step that
uses the property f(−π) = f(π), or, equivalently, that f can be extended to a continuous periodic function
on R.
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Since ε > 0 is arbitrary, this concludes the proof of the lemma.

Fejér’s theorem follows once we confirm that FN satisfies the hypotheses of the lemma.
Indeed,

1

2π

∫ π

−π
DN(x) dx = 1

and
1

2π

∫ π

−π
FN(x) dx =

1

N

N−1∑
0

1

2π

∫ π

−π
DN(x) dx = 1,

which confirms (i). Formula (3) shows that FN ≥ 0, so∫ π

−π
|FN(x)| dx =

∫ π

−π
FN(x) dx = 2π <∞

To prove (iii), fix δ > 0. For δ ≤ |x| ≤ π,

|FN(x)| ≤ 1

N sin2(x/2)
≤ 1

N sin2(δ/2)
≤ C/N

for a constant C depending on δ. Thus the integral in (iii) tends to zero.

Final Remark. Later on, we be able to recognize the way in which FN is better than DN

by looking at their Fourier series,

DN(x) =
N∑

n=−N

einx, FN(x) =
N∑

n=−N

(
1− |n|

N

)
einx

Let
h1(s) = 1[−1,1], h2(s) = (1− |s|)+

The function h1 is discontinuous, but h2 has a bounded first derivative. The Dirichlet and
Fejér kernels are

DN(x) =
∞∑

n=−∞

h1(n/N)einx, FN(x) =
∞∑

n=−∞

h2(n/N)einx,

and the fact that h2 is smoother than h1 accounts for the improved properties (ii) and (iii)
of FN that fail for DN .
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