18.103 Fall 2013

1. Fourier Series, Part 1.

We will consider several function spaces during our study of Fourier series. When we talk about $L^{p}((-\pi, \pi))$, it will be convenient to include the factor $1 / 2 \pi$ in the norm:

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{p} d x\right)^{1 / p} .
$$

In particular, the Lebesgue space $L^{2}((-\pi, \pi))$ is a Hilbert space with inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

The starting place for the theory of Fourier series is that the family of functions $\left\{e^{i n x}\right\}_{n=-\infty}^{\infty}$ is orthonormal, that is

$$
\left\langle e^{i n x}, e^{i m x}\right\rangle=0, n \neq m ; \quad\left\langle e^{i n x}, e^{i n x}\right\rangle=1, \quad n, m \in \mathbf{Z}
$$

The Fourier coefficients of f are defined by

$$
\hat{f}(n)=\left\langle f, e^{i n x}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x, \quad n \in \mathbf{Z} .
$$

($\mathbf{Z}=\{0, \pm 1, \pm 2, \ldots\}$ represents the integers.) The definition of Fourier the coefficients $\hat{f}(n)$ also makes sense for $f \in L^{1}((-\pi, \pi))$. The main issue is to find the ways in which the Fourier series

$$
\sum \hat{f}(n) e^{i n x}
$$

represents the function f.
The first basic remark is that for all $f \in L^{1}((-\pi, \pi))$,

$$
\begin{equation*}
|\hat{f}(n)| \leq\|f\|_{1} \tag{1}
\end{equation*}
$$

This is proved by putting the absolute value inside the integral:

$$
|\hat{f}(n)|=\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x\right| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x=\|f\|_{1} .
$$

Let $C^{k}(\mathbf{R}), k=0,1,2, \ldots$, denote the complex-valued functions that are k times continously differentiable on \mathbf{R}. $C(\mathbf{R})=C^{0}(\mathbf{R})$ denotes continuous functions on \mathbf{R}, and $f \in C^{k}(\mathbf{R})$ if and only if $f^{\prime} \in C^{k-1}(\mathbf{R})$. Denote by $C^{\infty}(\mathbf{R})$ the infinitely differentiable functions on \mathbf{R}.

If the function f is periodic of period $2 \pi(f(x+2 \pi)=f(x))$, then f defines a function on $\mathbf{T}=\mathbf{R} / 2 \pi \mathbf{Z}$, the quotient space of \mathbf{R} under the equivalence relation $x \sim x^{\prime}$ if $x-x^{\prime} \in 2 \pi \mathbf{Z}$. We will use the notation $C^{k}(\mathbf{T})$ for C^{k} functions on \mathbf{T}, which are identified with 2π-periodic functions in $C^{k}(\mathbf{R})$. We will identify functions in $L^{p}((-\pi, \pi))$ with 2π periodic functions on \mathbf{R} and write $L^{p}(\mathbf{T})$.

The proof in the preceding set of lecture notes that $C_{0}^{\infty}(\mathbf{R})$ is dense in $L^{p}(\mathbf{R}), 1 \leq p<\infty$, can be modified in a routine way to show that $C^{\infty}(\mathbf{T})$ is dense in $L^{p}(\mathbf{T}), 1 \leq p<\infty$. Indeed, the density can be proved using C^{∞} functions that are truncated to be zero in a small neighborhood of π (equivalent to $-\pi$).
Proposition 1. If $f \in C^{1}(\mathbf{T})$, then

$$
|\hat{f}(n)| \leq C /|n|
$$

Proof. For $n \neq 0$,

$$
\int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\int_{-\pi}^{\pi} f(x) \frac{d}{d x}\left(\frac{e^{-i n x}}{-i n}\right) d x=-\int_{-\pi}^{\pi} f^{\prime}(x) \frac{e^{-i n x}}{-i n} d x
$$

Hence,

$$
|\hat{f}(n)| \leq \frac{1}{2 \pi|n|} \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right| d x=\left\|f^{\prime}\right\|_{1} /|n|
$$

Exercise. Show that if $f \in C^{k}(\mathbf{T})$, then

$$
|\hat{f}(n)| \leq C /(1+|n|)^{k}
$$

Lemma 1. (Riemann-Lebesgue Lemma) Suppose that $h \in L^{1}(\mathbf{T})$. Then

$$
\hat{h}(n) \rightarrow 0 \quad \text { as } \quad|n| \rightarrow \infty
$$

Proof. Let $\epsilon>0$, and choose $g \in C^{1}(\mathbf{T})$ so that

$$
\|h-g\|_{L^{1}(\mathbf{T})} \leq \epsilon .
$$

By Proposition $1 \hat{g}(n) \rightarrow 0$ as $|n| \rightarrow \infty$. Therefore,

$$
\limsup _{n \rightarrow \infty}|\hat{h}(n)| \leq \limsup _{n \rightarrow \infty}(|\hat{h}(n)-\hat{g}(n)|+|\hat{g}(n)|)=\limsup _{n \rightarrow \infty}|\hat{h}(n)-\hat{g}(n)| .
$$

Next note that using (1),

$$
|\hat{h}(n)-\hat{g}(n)| \leq=\|h-g\|_{L^{1}(\mathbf{T})} \leq \epsilon .
$$

Thus we have shown

$$
\limsup _{n \rightarrow \infty}|\hat{h}(n)| \leq \epsilon
$$

And taking the limit as $\epsilon \rightarrow 0$ finishes the proof.

For any $f \in L^{1}(\mathbf{T})$, we define the partial sum of the Fourier series by

$$
s_{N}(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}
$$

Substituting the formula for $\hat{f}(n)$ into this formula, we find

$$
s_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \sum_{n=-N}^{N} e^{i n(x-y)} d y
$$

which we also write

$$
s_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) D_{N}(x-y) d y \quad \text { with } \quad D_{N}(t)=\sum_{n=-N}^{N} e^{i n t} .
$$

The formula for s_{N} can be written in more compact form using an important operation $*$ known as convolution.

$$
\begin{equation*}
s_{N}(x)=f * D_{N}(x) \tag{2}
\end{equation*}
$$

Convolution. In general, for f and g in $L^{1}(\mathbf{T})$, we define the operation of convolution by

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) d y=\frac{1}{2 \pi} \int_{a}^{a+2 \pi} f(y) g(x-y) d y
$$

For such f and g Fubini's theorem implies that $f * g$ defines an integrable function. In particular, $f * g(x)$ is defined and finite for almost every x (and periodic of period 2π). It's easy to see that convolution satisfies the distributive law, $f *(g+h)=f * g+f * h$. One can also confirm, using a change of variable, that the operation is commutative. In other words,

$$
f * g(x)=g * f(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(y) f(x-y) d y
$$

There will be more about convolution later.
Theorem 1. (Dini Test) If $f \in L^{1}(\mathbf{T})$, and for some fixed x

$$
\int_{-\pi}^{\pi} \frac{|f(x+y)-f(x)|}{|y|} d y<\infty
$$

then $s_{N}(x) \rightarrow f(x)$ as $N \rightarrow \infty$.

Proof. (Note that although f is merely an L^{1} function, the hypothesis specifies the value of $f(x)$ uniquely.) To prove the theorem observe first that

$$
\int_{-\pi}^{\pi} D_{N}(y) d y=\int_{-\pi}^{\pi}\left(\sum_{n=-N}^{N} e^{i n y}\right) d y=\int_{-\pi}^{\pi} d y=2 \pi
$$

Therefore,

$$
\begin{aligned}
s_{N}(x)-f(x) & =D_{N} * f(x)-f(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(y) f(x-y) d y-\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(y) f(x) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) D_{N}(y) d y
\end{aligned}
$$

Furthermore,

$$
D_{N}(y)=\sum_{n=-N}^{N} e^{i n y}=\frac{e^{i(N+1) y}-e^{-i N y}}{e^{i y}-1}
$$

Thus

$$
s_{N}(x)-f(x)=\hat{h}_{x}(N+1)-\hat{h}_{x}(-N)
$$

with

$$
h_{x}(y)=\frac{f(x-y)-f(x)}{e^{i y}-1} .
$$

Since $\left|e^{i y}-1\right| \geq 2|y| / \pi$ for all $|y| \leq \pi$, the hypothesis implies

$$
\int_{-\pi}^{\pi}\left|h_{x}(y)\right| d y \leq \frac{\pi}{2} \int_{-\pi}^{\pi} \frac{|f(x-y)-f(x)|}{|y|} d y<\infty
$$

Therefore, by the Riemann-Lebesgue lemma (Lemma 1)

$$
\lim _{N \rightarrow \infty} \hat{h}_{x}(N+1)-\hat{h}_{x}(-N)=0
$$

and the theorem is proved.
Corollary 1. If $f \in C^{1}(\mathbf{T})$, then
a) $s_{N}(x) \rightarrow f(x)$ as $N \rightarrow \infty$ for all $x \in \mathbf{T}$.
b) $\left\|s_{N}-f\right\|_{p} \rightarrow 0$ as $N \rightarrow \infty, 1 \leq p<\infty$.

Proof. Let $M=\max \left|f^{\prime}\right|$. Then $|f(x-y)-f(x)| \leq M|y|$ so that

$$
\left|h_{x}(y)\right| \leq\left|\frac{f(x-y)-f(x)}{e^{i y}-1}\right| \leq \pi M / 2
$$

In particular, by the Dini test (Theorem 1), $s_{N}(x) \rightarrow f(x)$. Furthermore, by (1), we have

$$
\left|s_{N}(x)\right| \leq\left|\hat{h}_{x}(N+1)\right|+\left|\hat{h}_{x}(-N)\right| \leq 2\left\|h_{x}\right\|_{1} \leq M \pi
$$

so that $\left|s_{N}(x)-f(x)\right|^{p} \leq(M \pi+|f(x)|)^{p}$ is a majorant. By the dominated convergence theorem,

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi}\left|s_{N}(x)-f(x)\right|^{p} d x=0
$$

Exercise. For each $\alpha, 0<\alpha<1$, define $C^{\alpha}(\mathbf{T})$ as the collection of 2π periodic functions on R satisfying

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}, \quad \text { for all } \quad x, y \in \mathbf{R}
$$

Show that the conclusion of Corollary 1 holds for all $f \in C^{\alpha}(\mathbf{T})$.
Corollary 2. The functions $e^{i n x}, n \in \mathbf{Z}$ form an orthonormal basis for $L^{2}(\mathbf{T})$. In particular, for all $f \in L^{2}(\mathbf{T})$,

$$
\lim _{N \rightarrow \infty}\left\|s_{N}-f\right\|_{2}=0, \quad \text { and } \quad\|f\|_{2}^{2}=\sum_{n \in \mathbf{Z}}|\hat{f}(n)|^{2}
$$

Proof. Corollary 1 shows that the closure of V in the $L^{2}(\mathbf{T})$ distance includes all functions in $C^{1}(\mathbf{T})$. Our density theorem says, in particular, that $C^{1}(\mathbf{T})$ is dense in $L^{2}(\mathbf{T})$. Thus V is dense in $L^{2}(\mathbf{T})$, and this is condition (a) of our theorem characterizing orthonormal bases.

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

