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1 Fourier Integrals of finite measures.

Denote the space of finite, positive, measures on R by

M+(R) = {µ : µ is a positive measure on R; µ(R) <∞}

Proposition 1 For µ ∈M+(R), we define the Fourier transform by

F(µ) = µ̂(ξ) =

∫
R
e−ixξ dµ(x)

Then
F : M+(R)→ Cb(R)

where Cb(R) is the space of bounded continuous functions.

Proof. We have

|µ̂(ξ)| ≤
∣∣∣∣∫

R
e−ixξ dµ(x)

∣∣∣∣ ≤ ∫
R
|e−ixξ| dµ(x) = µ(R) <∞

Furthermore, since µ(R) <∞, the function g(x) ≡ 1 is integrable, and serves as a majorant,
|e−ixξ| ≤ 1 = g(x). By the dominated convergence theorem, µ̂(ξ) is continuous.

Theorem 1 (Uniqueness) Let µ ∈M+(R). Then µ is uniquely determined by µ̂.

Proof. We show that if µ̂1 = µ̂2, then µ1 = µ2. Let ϕ ∈ S. Then∫
R
ϕ̂(y)dµ(y) =

∫
R
ϕ(x)µ̂(x) dx (1)

Indeed, by Fubini’s theorem∫
R
ϕ̂(y)dµ(y) =

∫
R

∫
R
e−ixyϕ(x) dxdµ(y) =

∫
R

∫
R
e−ixydµ(y)ϕ(x) dx =

∫
R
µ̂(y)ϕ(x) dx
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If µ̂1(y) = µ̂2(y), then by (1), ∫
R
ϕ̂(y)dµ1(y) =

∫
R
ϕ̂(y)dµ2(y)

for every ϕ ∈ S. Since the Fourier transform is invertible on S, we can also write this as∫
R
ϕ(y)dµ1(y) =

∫
R
ϕ(y)dµ2(y) for all ϕ ∈ S

Choose ϕε ∈ S(R) such that
1[a,b] ≤ ϕε ≤ 1[a−ε,b+ε]

By the dominated convergence theorem

µ1([a, b]) = lim
ε→0

∫
R
ϕεdµ1 = lim

ε→0

∫
R
ϕεdµ2 = µ2([a, b])

This shows that µ1 and µ2 are the same.

Weak convergence of measures. Let µj and µ denote positive measures with finite total
mass on R. We say that µj tends weakly to µ if

lim
j→∞

∫
R
ϕdµj =

∫
R
ϕdµ

for all ϕ ∈ C0(R).

Exercise. Show that if

lim
j→∞

∫
R
ϕdµj =

∫
R
ϕdµ

for all ϕ ∈ C∞0 (R), then µj → µ weakly. (The reason is that C∞0 (R) is dense in C0(R) in the
uniform norm, i. e. the L∞(R) norm. In particular, functions ϕ ∈ S(R) sufffice.)

We will establish weak convergence by finding a sufficient condition for it in terms of
Fourier transforms. (Note that we established the analogous lemma for Fourier series when
we proved Weyl’s equidistribution theorem.)

Proposition 2 If µj and µ belong to M+(R), and for each ξ ∈ R,

lim
j→∞

µ̂j(ξ) = µ̂(ξ)

then

lim
j→∞

∫
R
fdµj =

∫
R
fdµ

for all f ∈ S(R).
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Proof. We have in particular, µj(R) = µ̂j(0)→ µ̂(0) so that the sequence µj(R) is bounded.
(In all of our applications we have probability measures, µj(R) = 1, so this step is not
needed.) Thus

sup
j
|µ̂j(ξ)| = sup

j
µj(R) ≤ C <∞

For ϕ ∈ S, |ϕ(ξ)µ̂j(ξ)| ≤ C|ϕ(ξ)| is an integrable majorant, so the dominated convergence
theorem gives

lim
j→∞

∫
R
ϕ(ξ)µ̂j(ξ) dξ =

∫
R
ϕ(ξ)µ̂(ξ) dξ

But by Fubini’s theorem this is the same as

lim
j→∞

∫
R
ϕ̂(y)dµj(y) =

∫
R
ϕ̂(y))dµ(y)

But the set of all ϕ̂ such that ϕ ∈ S is all of S, so we have the desired weak convergence of
µj to µ.

In the applications we want more explicit kind of convergence, namely convergence of
µj(I) for intervals I. This nearly works. What can go wrong is illustrated using sequences
of point masses,

δa(x) = δ(x− a)

This measure is defined by δa(E) = 1 if a ∈ E and 0 if a /∈ E. The sequence δ1/n tends
weakly to δ0 as n→∞, but

lim
j→∞

δ1/n(I) = 1 6= 0 = δ0(I), I = (0, 1).

A continuous measure is a measure µ such that µ(a) = 0 for any single point a. A
measure that has only point masses is called atomic, and a continuous measure is sometimes
called non-atomic. On your homework you show how to split a measure into atomic and
continuous parts. The discontinuities arise at at most countably many points. A continuous
measure is characterized by the fact that µ((a, b) is continuous as a function of a and b.
Equivalently, µ((a, b)) = µ([a, b]) for any a ≤ b.

Proposition 3 If

lim
j→∞

∫
R
fdµj =

∫
R
fdµ

for all f ∈ C∞0 (R), then
lim sup
j→∞

µj((a, b)) ≤ µ([a, b])
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and
lim inf
j→∞

µj((a, b)) ≥ µ((a, b))

In particular if µ is continuous then

µj((a, b))→ µ((a, b)) = µ([a, b])

Proof. Let ϕ ∈ S be such that 1(a,b) ≤ ϕ ≤ 1(a−ε,b+ε), then

lim sup
j→∞

µj((a, b)) ≤ lim sup
j→∞

∫
R
ϕdµj =

∫
R
ϕdµ ≤ µ((a− ε, b+ ε))

Taking the limit as ε → 0 gives the upper bound. The lower bound is similar using ϕ ∈
C∞0 (R) such that 1(a+ε,b−ε) ≤ ϕ ≤ 1(a,b). It is important to note that the sequence µj can
have all the atomic parts it wants. Only the target measure µ needs to be continuous at the
endpoints. This is crucial to the applications.

2 An application to the central limit theorem.

Recall that in probability theory, we are concerned with measures µX on R that represent
the probability distribution of a random variable X satisfying

P (a < X < b) = µX((a, b)) = E(1(a,b)(X)) =

∫
R

1(a,b)dµX

and, more generally, for any Borel function ϕ on R that is µf -integrable,∫
R
ϕ(x)dµf (x) = E(ϕ(X)) =

∫
M

ϕ(X)dν

For example, all the Rademacher functions Rn all have the same distribution, value 1 with
probability 1/2 and value −1 with probability 1/2. The corresponding measure is denoted

µ =
1

2
δ1 +

1

2
δ−1

E(ϕ(Rn)) =

∫
R
ϕ(x)dµ(x) =

1

2
ϕ(1) +

1

2
ϕ(−1)
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The mean and variance of X is defined by

E(X) =

∫ ∞
−∞

x dµX(x); Var(X) = E((X − E(X))2) =

∫ ∞
−∞

(x− E(X))2 dµX(x)

For X = Rn the mean is 0 and the variance is

1

2
(1− 0)2 +

1

2
(1− 0)2 = 1

The characteristic function χX of a random variable X is defined by

χX(t) = E(eitX) =

∫ ∞
−∞

eitxdµX(x)

For example, the characteristic function of each Rn is

χ(t) = (1/2)eit + (1/2)e−it = cos(t)

In general, up to a sign, the characteristic function is the Fourier transform of the distribution
of a random variable X,

χX(t) = µ̂X(−t)

The notion of weak convergence is central to probability theory. Weak convergence of
the distributional measures is the same as

E(ϕ(Xj))→ E(ϕ(X))

for all ϕ ∈ C0(R) (or equivalently for all ϕ ∈ C∞0 (R)). In probability theory it’s also
convenient to know (and not hard to show) that one can broaden the class of test functions
from ϕ ∈ C0(R) to ϕ ∈ Cb(R), the space of bounded continuous functions.

The word used by probabilists for weak convergence is convergence in law. They often
prefer an equivalent, but more concrete, formulation using test functions of the form ϕ = 1I ,
where I ⊂ R is an interval. We have

E(X ∈ I) = E(1I(X)) =

∫
I

dµX = µX(I)

The discontinuity of 1I at its endpoints requires us to change the statement slightly, as we
explained earlier and now express using notations from probability theory.

5



The (cumulative) distribution function FX of a random variable X (with probability
distribution µX) is defined as

FX(a) = E(X ≤ a) = µX((−∞, a])

We say that Xj converges in law to X if

lim
j→∞

FXj
(a) = FX(a)

for every a at which F (x) is continuous. It follows that if Xj tends to X in law

lim
j→∞

E(a < Xj < b) = E(a < X < b)

provided FX is continuous at a and b. Proposition 3 says that weak convergence of µXj
to

µX implies convergence in law of Xj to X. The converse is left as an exercise; we won’t
use it. (To prove this, first figure out how convergence in law identifies the jumps of the
increasing function FX .)

A gaussian random variable X with mean zero and variance 1 is a variable whose distri-
bution is given by

E(a < X < b) =

∫ b

a

g(x) dx;

in which

dµX = g(x)dx, g(x) =
1√
2π
e−x

2/2

Thus

E(ϕ(X)) =

∫ ∞
−∞

ϕ(x)g(x) dx

The characteristic function is

χ(t) = χX(t) = E(eitX) =

∫ ∞
−∞

eixtg(x) dx = ĝ(−t) = e−t
2/2 (2)

In particular,

E(1) =

∫ ∞
−∞

g(x) dx = 1

(This is just the required normalization of a probability measure: total mass 1.) Differenti-
ating (2) with respect to t, we get

E(X) =

∫ ∞
−∞

x g(x) dx = 0 (mean zero)
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Differentiating again, we get

E(X2) =

∫ ∞
−∞

x2 g(x) dx = 1 (variance 1)

We can rescale to get any variance. Let

gσ(x) = (1/σ)g(x/σ), g(x) = g1(x) =
1√
2π
e−x

2/2

The parameter σ is known as the standard deviation and the variance is the square of the
standard deviation. ∫ ∞

−∞
x2 gσ(x) dx = σ2

We can also change the mean by translation: If X has distribution gσ(x−x0)dx, then it has
mean x0 and variance σ2.

To clarify the meaning of the scale factor σ, consider Xσ a gaussian random variable with
standard deviation σ, and X1, a gaussian random variable with standard deviation 1. Then

P (aσ < Xσ − E(Xσ) < bσ) = P (a < X1 − EX1 < b)

Theorem 2 (Central Limit Theorem) Let X1, X2, . . . be independent, identically distributed
random variables such that

E(X1) = M ; E[(X1 −M)2] = σ2; E(|X1|2+α) = A <∞

for some α > 0. Then

E
(
a <

X1 + · · ·+Xn − nM√
n

< b

)
−→

∫ b

a

gσ(x) dx

Lemma 1
eix = 1 + ix+ (ix)2/2 +R(x)

with
|R(x)| ≤ 4 min(|x|2, |x|3) ≤ 4|x|2+α

for all α, 0 ≤ α ≤ 1.
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Proof. The fundamental theorem of calculus implies

f(1) = f(0) + f ′(0) +
1

2!
f ′′(0) +

1

2!

∫ 1

0

f ′′′(t)(1− t)2 dt

Let f(t) = eitx. Then

R(x) =
1

2

∫ 1

0

(ix)3eitx(1− t)2 dt

Therefore,

|R(x)| ≤ |x|
3

2

∫ 1

0

(1− t)2 dt = |x|3/6

for all |x| ≤ 1. On the other hand, for |x| ≥ 1,

|R(x)| = |1 + ix+ (ix)2/2− eix| ≤ 2 + |x|+ x2/2 ≤ 4|x|2

Replacing Xj with Xj −M we may assume without loss of generality that M = 0. We
compute the Fourier transform of the measure µn defined by

µn((a, b)) = P

(
a <

X1 + · · ·+Xn√
n

< b

)

µ̂n(ξ) = E
(
e−iξ(X1+···+Xn)/

√
n
)

=
n∏
j=1

E(e−iξXj/
√
n) =

(
E(e−iξX1/

√
n)
)n

and since M = 0,

E(e−iξX1/
√
n) =

∫
R
e−ixξ dµ1(x) =

∫
R
[1− ixξ/

√
n+ (−ixξ)2/2n+R(−xξ/

√
n)] dµ1(x)

= 1− σ2ξ2/2n+O(|ξ|2+α/n1+α/2)

For each fixed ξ we therefore get

lim
n→∞

[1− σ2ξ2/2n+O(1/n1+α/2)]n = e−σ
2ξ2/2

In other words, for all ξ
lim
n→∞

µ̂n(ξ) = ĝσ(ξ)

Then we apply Proposition 2 and 3 to finish the proof.
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Sums of random variables and convolution.

We can rephrase the central limit theorem in terms of convolution. For independent X1

and X2, suppose that νj = µXj
, then

E(ϕ(X1 +X2)) =

∫
R

∫
R
ϕ(x1 + x2)dν1(x1)dν2(x2)

In particular, if we define a measure by

ν(I) =

∫
R

∫
R

1I(x1 + x2)dν1(x1)dν2(x2) (3)

for all intervals I, the ν = µX1+X2 , the distribution of the sum X1 +X2.

Exercise. Show that if dνj = fj(x)dx, with fj ∈ L1(R), then

dν = g(x)dx, with g = f1 ∗ f2

This justifies turning (3) into the definition of ν = ν1 ∗ ν2.

Exercise. Show that under this definition,

ν̂1 ∗ ν2(ξ) = ν̂1ν̂2 (4)

For a sequence of independent random variables, Xj,

µX1+···+Xn = µX1 ∗ µX2 ∗ · · · ∗ µXn

For instance, if µX1 = (1/2)(δ−1 + δ1), and the variables are i. i. d., then

µX1+···+Xn = 2−n
n∑
k=0

(
n

k

)
δ−n+2k

Exercise. Express the central limit theorem (in this special case) in terms of this measure,
and find the scaling under which this measure tends weakly to the gaussian distribution
g1(x)dx.

We can also consider the class of signed measures Borel measures M(R), real-valued
functions µ on Borel sets of R such that

‖µ‖ = sup{
∞∑
j=1

|µ(Ij)| :
⋃

Ij = R, (disjoint intervals)} <∞
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The norm ‖µ‖ represents the total mass of µ (also called the total variation). A signed
measure can always be written as

µ = µ+ − µ−
for two finite, positive measures µ± such that, in addition, there are Borel sets E± such
that µ±(E±) = µ±(R) and µ+(E−) = µ−(E+) = 0. (In this case we say µ+ and µ− are
mutually singular, and write µ+ ⊥ µ−. This specifies the measures uniquely.) Using this
decomposition, we can define µ∗ν for signed measures using linearity and (4), and it remains
the case that Fourier transform of the convolution is the product of the Fourier transforms.

3 S ′(R), the class of tempered distributions

Define a metric on the Schwartz class

S(R) = {ϕ ∈ C∞(R) : ‖ϕ‖j,k <∞, j, k = 0, 1, 2, . . . }
with seminorms1

‖ϕ‖j,k = sup
x∈R
|xjϕ(k)(x)|

by

dist(f, g) =
∞∑

j,k=0

2−j−k min(‖f − g‖j,k, 1)

We take the minimum with 1 so that the sum is finite. The seminorm property is used to
confirm the triangle inequality so that this is a metric.

The dual space to S(R), denoted S ′(R) is the set of continuous, linear functions T : S →
C. (The point of defining the metric was to say in what sense T is continuous.) This class is
also known as the space of tempered distributions. (More generally, the class of distributions,
are dual to the smaller function space C∞0 (R). Because the tempered distributions have to act
on Schwartz class functions, they have better behavior at infinity than general distributions.
The more general distributions don’t have well defined Fourier transforms because they can
grow too fast at infinity.)

The most useful notion of convergence in S ′ is the same weak convergence we already
discussed. We say that Tj tends to T if

lim
j→∞

Tj(ϕ) = T (ϕ)

1A seminorm satisfies ‖f‖ ≥ 0, ‖f + g‖ ≤ ‖f‖ + ‖g‖ and ‖cf‖ = |c|‖f‖, but not necessarily the last
axiom: ‖f‖ = 0 need not imply that f = 0.
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for all ϕ ∈ S. (The technical reason why this is a useful kind of limit is that the existence of
the limit point by point for each ϕ ∈ S(R) suffices in order that the limiting linear operator
T be continuous in the S(R) metric.)

If u(x) is a bounded measurable function or u ∈ Lp(R), then we define

Tu(ϕ) =

∫
R
u(x)ϕ(x) dx

for any ϕ ∈ S. In this way we identify every such function u with a distribution. Measures
are also identified with

Tµ(ϕ) =

∫
R
ϕdµ

Any linear continuous operation on S defines a corresponding (dual) operation on S ′. For
example, we have calculated for u ∈ S and for ϕ ∈ S that∫

R

uϕ̂ dx =

∫
R
ûϕ dx

This explains the definition of the Fourier transform of any T ∈ S ′(R), namely

T̂ (ϕ) = T (ϕ̂)

For a measure, µ ∈M+(R) we could also define the Fourier transform by

µ̂(ξ) =

∫
R
e−ixξ dµ(x)

The two definitions are consistent. The proof is left as an exercise. But let’s illustrate it by
comparing the two definitions in one case, namely µ0 = δ, the delta function (unit mass at
0). The correponding tempered distribution T0 ∈ S ′(R) is given by T0(ϕ) = ϕ(0). Then

µ̂0(ξ) =

∫
R
e−ixξ dµ0(x) = e−i0ξ = 1

On the other hand,

T̂0(ϕ) = T0(ϕ̂) = ϕ̂(0) =

∫
R
ϕ(x) dx =

∫
R
ϕ(x)u0(x) dx

with u0(x) = 1. In other words, the definitions are consistent, yielding µ̂0 ≡ 1.
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The idea of duality also leads to the definition of the derivative of a tempered distribution,
namely,

T ′(ϕ) = −T (ϕ′)

This is motivated by the formula (in the special case u ∈ S, ϕ ∈ S,∫
R
u′ϕdx = −

∫
R
uϕ′ dx,

which follows from integration by parts (or the product rule (uϕ)′ = u′ϕ+ uϕ′).

Exercise. Find T̂ ′(ξ) directly from the definition in the case T = δ. More examples and
formulas are on PS11.

Fourier inversion on S ′(R). The Fourier transform is a continuous linear mapping from
S(R) to S(R) and it inverse is also a continuous mapping from S(R) to S(R) with the
formula

ϕ̌(x) =
1

2π

∫
R
ϕ(ξ)eixξdξ

Proposition 4 If T ∈ S ′(R), and define S by

S(ϕ) = T (ϕ̌)

Then S ∈ S ′(R) and Ŝ = T . In other words, the mapping T 7→ Ť defined by

Ť (ϕ) = T (ϕ̌)

inverts the Fourier transform on S ′(R).

This proposition is a corollary of Fourier inversion on S(R) and the definition of Fourier
transform on S ′(R). Let T ∈ S ′(R). The inverse Fourier tranform mapping ϕ 7→ ϕ̌ is a
continuous linear mapping from S(R)→ S(R), so S defined by

S(ϕ) = T (ϕ̌)

is a continuous linear mapping from S(R) → C. In order to show that Ŝ = T , recall that
the Fourier inversion formula on S(R) says that for all η ∈ S(R), if ϕ = η̂, then ϕ̌ = η. Thus
for all η ∈ S(R) (and denoting ϕ = η̂)

Ŝ(η) = S(η̂) = S(ϕ) = T (ϕ̌) = T (η)
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