1 Fourier Integrals on $L^{2}(\mathbb{R})$ and $L^{1}(\mathbb{R})$.

The first part of these notes cover $\S 3.5$ of AG, without proofs. When we get to things not covered in the book, we will start giving proofs.

The Fourier transform is defined for $f \in L^{1}(\mathbb{R})$ by

$$
\begin{equation*}
\mathcal{F}(f)=\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x \tag{1}
\end{equation*}
$$

The Fourier inversion formula on the Schwartz class $\mathcal{S}(\mathbb{R})$.
Theorem 1 If $f \in \mathcal{S}(\mathbb{R})$, then $\hat{f} \in \mathcal{S}(\mathbb{R})$ and

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i x \xi} d \xi
$$

Thus the inverse operator to the Fourier transform is given by

$$
\check{g}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(\xi) e^{i x \xi} d \xi=\frac{1}{2 \pi} \hat{g}(-x)
$$

A function $f \in L^{2}(\mathbb{R})$ need not be in $L^{1}(\mathbb{R})$ and the integral defining \hat{f} may be divergent. Nevertheless, one can define the Fourier transform \hat{f} as a limit in two ways. The first way uses the Plancherel theorem.

Corollary 1 If $f \in \mathcal{S}(\mathbb{R})$, then

$$
2 \pi \int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\hat{f}(\xi)|^{2} d \xi
$$

Corollary 1 leads to a definition of the Fourier transform for $f \in L^{2}(\mathbb{R})$ by continuity in the L^{2} distance as follows.

Corollary 2 Let $f \in L^{2}(\mathbb{R})$ and let $f_{j} \in \mathcal{S}(\mathbb{R})$ be such that $\left\|f-f_{j}\right\|_{2} \rightarrow 0$ as $j \rightarrow \infty$. Then \hat{f}_{j} is a Cauchy sequence in $L^{2}(\mathbb{R})$ and the limit (in the L^{2} metric) is independent of the choice of sequence approximating f. Thus there is a unique function denoted $\hat{f} \in L^{2}(\mathbb{R})$ for which

$$
\lim _{j \rightarrow \infty}\left\|\hat{f}-\hat{f}_{j}\right\|_{2}=0
$$

Furthermore,

$$
\|\hat{f}\|_{2}^{2}=2 \pi\|f\|_{2}^{2}
$$

Corollary 3 If $f \in L^{2}(\mathbb{R})$, and $\hat{f}=0$ almost everywhere, then $f=0$.

Fourier inversion formula on the Schwartz class extends by continuity to Fourier inversion on $L^{2}(\mathbb{R})$.

Corollary 4 (Fourier inversion on L^{2}) Let

$$
\mathcal{G}(f)(x)=\frac{1}{2 \pi} \hat{f}(-x)
$$

then for all $f \in L^{2}(\mathbb{R})$,

$$
\mathcal{G} \circ \mathcal{F}(f)=\mathcal{F} \circ \mathcal{G}(f)=f
$$

Thus, up to the factor 2π, the Fourier transform is an isometry (distance preserving) from $L^{2}(\mathbb{R})$ to itself.

We need to make sure that our two definitions of the Fourier transform for L^{1} and L^{2} are consistent. This is taken care of by the following proposition.

Proposition 1 If $f \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$, then the definition by continuity in Corollary 2 for \hat{f} coincides with the definition (1) above.
(See PS9, Exercise AG $\S 3.5 / 3$, p. 153. The starting point of the proof of the proposition is that one can choose $f_{j} \in \mathcal{S}$ so that $\left.\left\|f-f_{j}\right\|_{1}+\left\|f-f_{j}\right\|_{2} \rightarrow 0\right)$.

As a consequence of the proposition, we find a second way to define the Fourier transform on L^{2} using a more straightforward truncation Indeed, in the very next exercise (PS9, AG $\S 3.5 / 4$, p. 153) you were asked to show that if $f \in L^{2}(\mathbb{R})$, then

$$
\hat{f}(\xi)=\lim _{N \rightarrow \infty} \int_{-N}^{N} f(x) e^{-i x \xi} d x, \quad \text { (limit in } L^{2} \text { sense) }
$$

To prove this, note that if $f_{N}(x)=f(x) 1_{[-N, N]}$, then $f_{N} \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$, and by Exercise $\S 3.5 / 3, \hat{f}_{N}(\xi)$ is the integral on the right. On the other hand, it follows from Corollary 2 applied to $f-f_{N}$ that

$$
\left\|\hat{f}-\hat{f}_{N}\right\|_{2}^{2}=2 \pi\left\|f-f_{N}\right\|_{2}^{2}=2 \pi \int_{|x|>N}|f(x)|^{2} d x
$$

which tends to zero by the dominated convergence theorem (with majorant $|f(x)|^{2}$).
We now deduce a more explicit version of Fourier inversion on L^{2}, which can be stated as follows.

Theorem 2 Suppose that $f \in L^{2}(\mathbb{R})$. Then $\hat{f}(\xi) 1_{[-N, N]}(\xi)$ is in $L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ and

$$
s_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N} \hat{f}(\xi) e^{i x \xi} d \xi
$$

satisfies

$$
\lim _{N \rightarrow \infty}\left\|f-s_{N}\right\|_{L^{2}}=0
$$

To begin the proof of Theorem 2, consider $f \in L^{2}(\mathbb{R})$. Then by Corollary $2, \hat{f} \in L^{2}(\mathbb{R})$ and hence, by the Cauchy-Schwarz inequality, $\hat{f} 1_{[-N, N]} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. We will apply a proposition analogous to Proposition 1 (with exactly the same proof).

Proposition 2 If $h \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then the inverse Fourier tranform obtained by continuity in the L^{2} norm coincides with the L^{1} definition:

$$
\mathcal{G}(h)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(\xi) e^{i x \xi} d \xi
$$

Let $h=\hat{f} 1_{[-N, N]}$. Then $h \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and Proposition 2 implies

$$
s_{N}(x)=\mathcal{G}(h)(x)
$$

Since $h \in L^{2}(\mathbb{R})$, we also have $s_{N} \in L^{2}(\mathbb{R})$, and we may take the Fourier transform and apply Theorem 4 to obtain

$$
\hat{s}_{N}(\xi)=h(\xi)=\hat{f}(\xi) 1_{[-N, N]}(\xi)
$$

Finally, applying the formula in Corollary 2

$$
2 \pi\left\|f-s_{N}\right\|_{2}^{2}=\left\|\hat{f}-\hat{s}_{N}\right\|_{2}^{2}=\int_{|\xi|>N}|\hat{f}(\xi)|^{2} d \xi \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

(The last step uses the dominated convergence theorem with majorant $\mid \hat{f}\left(\left.\xi\right|^{2}\right.$.) This ends the proof of Theorem 2.

Our last task is to find a Fourier inversion formula on $L^{1}(\mathbb{R})$.
Theorem 3 Let $f \in L^{1}(\mathbb{R})$ and denote

$$
\sigma_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N}(1-|\xi / N|)^{+} \hat{f}(\xi) e^{i x \xi} d \xi
$$

Then

$$
\lim _{N \rightarrow \infty}\left\|f-\sigma_{N}\right\|_{L^{1}}=0
$$

Corollary 5 If $f \in L^{1}(\mathbb{R})$, and $\hat{f}=0$, then $f=0$.

The idea of the proof of Theorem 3 is parallel to the case of Fourier series. Note that Fubini's theorem implies that for f and g in $L^{1}(\mathbb{R})$,

$$
\begin{equation*}
\widehat{(f * g)}(\xi)=\hat{f}(\xi) \hat{g}(\xi) \tag{2}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\sigma_{N}(x)=f * F_{N}(x) \tag{3}
\end{equation*}
$$

for a function F_{N}, known (as in the the case of the circle group) as the Fejér kernel.

Theorem 4 (Approximate identity) If $K \in L^{1}(\mathbb{R}), K_{\epsilon}(x)=(1 / \epsilon) K_{\epsilon}(x)$, and

$$
\int_{-\infty}^{\infty} K(x) d x=1
$$

then $\left\|K_{\epsilon} * f-f\right\|_{1} \rightarrow 0$ for all $f \in L^{1}(\mathbb{R})$.

Consider $K(x)=F_{1}(x), K_{\epsilon}=F_{1 / \epsilon}$ with $\epsilon=1 / N$. It will suffice to show that $K=F_{1}$ is integrable with integral 1. In fact, we will find that $F_{1}(x)>0$ and

$$
\begin{equation*}
\int_{\mathbb{R}}\left|F_{1}(x)\right| d x=\int_{\mathbb{R}} F_{1}(x) d x=\hat{F}_{1}(0)=1 \tag{4}
\end{equation*}
$$

Thus the approximate identity theorem implies that $\left\|\sigma_{N}-f\right\|_{1} \rightarrow 0$ as $N \rightarrow \infty$ for all $f \in L^{1}(\mathbb{R})$.

We will find the formula for F_{N} using the identity

$$
\hat{F}_{N}(\xi)=(1-|\xi / N|)^{+}
$$

This function has the shape of a triangle. It has a very simple relationship with change of scale, namely, $\hat{F}_{N}(\xi)=\hat{F}_{1}(\xi / N)$ and by change of variables, $F_{N}(x)=N F_{1}(N x)$. One can easily compute F_{1} and hence F_{N} using the inverse Fourier transform formula and integration by parts, but we prefer to derive its fomula by a more circuitous route that will enable us to see why $F_{N}(x)$ is essentially the square of $D_{N}(x)$, the Dirichlet kernel.

Define

$$
\hat{D}_{N}(\xi)=1_{[-N, N]}(\xi)
$$

Then Proposition 2 gives

$$
D_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N} e^{i x \xi} d \xi=\left.\frac{e^{i x \xi}}{2 \pi i x}\right|_{-N} ^{N}=\frac{\sin N x}{\pi x}
$$

D_{N} is known as the Dirichlet kernel (analogous to the one for Fourier series).

$$
s_{N}(x)=f * D_{N}(x) ; \quad \hat{s}_{N}(\xi)=\hat{f}(\xi) 1_{[-N, N]}(\xi)
$$

(Note that $D_{N}(x)^{2} \leq 1 /|x|^{2}$ as $|x| \rightarrow \infty$ so that $D_{N} \in L^{2}(\mathbb{R})$. Thus $f * D_{N}(x)$ is a convergent integral for every x, provided $f \in L^{2}(\mathbb{R})$.) We also remark that D_{N} has the following scaling properties.

$$
D_{N}(x)=N D_{1}(N x) ; \quad \hat{D}_{N}(\xi)=\hat{D}_{1}(\xi / N)
$$

As in the case of Fourier series, it does not work to approximate f by $s_{N}(x)$ for $f \in L^{1}(\mathbb{R})$. By inspection, we see that $\left|D_{N}(x)\right|$ has the size of $1 /|x|$ as $|x| \rightarrow \infty$ so that $D_{N} \notin L^{1}(\mathbb{R})$. Even figuring out exactly what $f * D_{N}(x)$ means for $f \in L^{1}(\mathbb{R})$ is delicate and beyond the scope of this course.

So instead of D_{N}, we work out the formula for the Fejér kernel F_{N}. Since $\hat{D}_{1 / 2}(\xi)=$ $1_{[-1 / 2,1 / 2]}$, we have the convolution formula

$$
\hat{D}_{1 / 2} * \hat{D}_{1 / 2}(\xi)=(1-|\xi|)^{+}=\hat{F}_{1}(\xi)
$$

Because the inverse Fourier transform is $1 / 2 \pi$ times the Fourier transform (with a sign change) a formula equivalent to (2) says

$$
\mathcal{G}(f * g)=2 \pi \mathcal{G}(f) \mathcal{G}(g)
$$

Apply this with $f=g=1_{[-1 / 2,1 / 2]}=\hat{D}_{1 / 2}$, then

$$
F_{1}=\mathcal{G}(f * g)=2 \pi \mathcal{G}(f) \mathcal{G}(g)=2 \pi D_{1 / 2}^{2}
$$

In other words,

$$
F_{1}(x)=2 \pi \frac{\sin ^{2}(x / 2)}{(\pi x)^{2}}=\frac{2 \sin ^{2}(x / 2)}{\pi x^{2}}
$$

Next we rescale. Since $\hat{F}_{N}(\xi)=\hat{F}_{1}(\xi / N)$, we have

$$
F_{N}(x)=N F_{1}(N x)=\frac{2 N \sin ^{2}(N x / 2)}{\pi(N x)^{2}}=\frac{2 \sin ^{2}(N x / 2)}{\pi N x^{2}}
$$

The only feature of the explicit formula for $F_{N}(x)$ that we need is $F_{N}(x)>0$. Since $\hat{F}_{N}(0)=$ 1 , (4) follows.

The last step in the proof is to confirm (3). If $f \in L^{1}(\mathbb{R})$, then \hat{f} is continuous and by definition,

$$
\sigma_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N} \hat{f}(\xi)(1-|\xi / N|) e^{i x \xi} d \xi=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(y) e^{-i y \xi} d y(1-|\xi / N|) e^{i x \xi} d \xi
$$

The majorant $|f(y)|(1-|\xi / N|)^{+}$is integrable with respect to $d y d \xi$ so Fubini's theorem and Theorem 2 applied to F_{N} imply

$$
\sigma_{N}(x)=\int_{\mathbb{R}} f(y) \frac{1}{2 \pi} \int_{\mathbb{R}}(1-|\xi / N|)^{+} e^{i(x-y) \xi} d \xi d y=f * F_{N}(x)
$$

As a final remark, we double check our arithmetic in the computation of F_{N} as follows.

$$
F_{N}(0)=\frac{1}{2 \pi} \int_{-N}^{N}(1-|\xi / N|) d \xi
$$

The integral on the right is $1 / 2 \pi$ times the area of the triangle of base $2 N$ and height 1 , so the total is $N / 2 \pi$. The left side is

$$
F_{N}(0)=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}(N x / 2)}{\pi N x^{2}}=\lim _{x \rightarrow 0} \frac{2(N x / 2)^{2}}{\pi N x^{2}}=N / 2 \pi
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

