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1 Fourier Integrals on L2(R) and L1(R).

The first part of these notes cover §3.5 of AG, without proofs. When we get to things not
covered in the book, we will start giving proofs.

The Fourier transform is defined for f ∈ L1(R) by

F(f) = f̂(ξ) =

∫ ∞
−∞

f(x)e−ixξ dx (1)

The Fourier inversion formula on the Schwartz class S(R).

Theorem 1 If f ∈ S(R), then f̂ ∈ S(R) and

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)eixξdξ

Thus the inverse operator to the Fourier transform is given by

ǧ(x) =
1

2π

∫ ∞
−∞

g(ξ)eixξdξ =
1

2π
ĝ(−x)

A function f ∈ L2(R) need not be in L1(R) and the integral defining f̂ may be divergent.
Nevertheless, one can define the Fourier transform f̂ as a limit in two ways. The first way
uses the Plancherel theorem.

Corollary 1 If f ∈ S(R), then

2π

∫
R
|f(x)|2dx =

∫
R
|f̂(ξ)|2dξ

Corollary 1 leads to a definition of the Fourier transform for f ∈ L2(R) by continuity in the
L2 distance as follows.
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Corollary 2 Let f ∈ L2(R) and let fj ∈ S(R) be such that ‖f − fj‖2 → 0 as j → ∞.

Then f̂j is a Cauchy sequence in L2(R) and the limit (in the L2 metric) is independent of

the choice of sequence approximating f . Thus there is a unique function denoted f̂ ∈ L2(R)
for which

lim
j→∞
‖f̂ − f̂j‖2 = 0

Furthermore,
‖f̂‖22 = 2π‖f‖22

Corollary 3 If f ∈ L2(R), and f̂ = 0 almost everywhere, then f = 0.

Fourier inversion formula on the Schwartz class extends by continuity to Fourier inversion
on L2(R).

Corollary 4 (Fourier inversion on L2) Let

G(f)(x) =
1

2π
f̂(−x)

then for all f ∈ L2(R),
G ◦ F(f) = F ◦ G(f) = f

Thus, up to the factor 2π, the Fourier transform is an isometry (distance preserving) from
L2(R) to itself.

We need to make sure that our two definitions of the Fourier transform for L1 and L2

are consistent. This is taken care of by the following proposition.

Proposition 1 If f ∈ L2(R)∩L1(R), then the definition by continuity in Corollary 2 for f̂
coincides with the definition (1) above.

(See PS9, Exercise AG §3.5/3, p. 153. The starting point of the proof of the proposition is
that one can choose fj ∈ S so that ‖f − fj‖1 + ‖f − fj‖2 → 0).

As a consequence of the proposition, we find a second way to define the Fourier transform
on L2 using a more straightforward truncation Indeed, in the very next exercise (PS9, AG
§3.5/4, p. 153) you were asked to show that if f ∈ L2(R), then

f̂(ξ) = lim
N→∞

∫ N

−N
f(x)e−ixξdx, (limit in L2 sense)
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To prove this, note that if fN(x) = f(x)1[−N,N ], then fN ∈ L2(R) ∩ L1(R), and by Exercise

§3.5/3, f̂N(ξ) is the integral on the right. On the other hand, it follows from Corollary 2
applied to f − fN that

‖f̂ − f̂N‖22 = 2π‖f − fN‖22 = 2π

∫
|x|>N

|f(x)|2dx

which tends to zero by the dominated convergence theorem (with majorant |f(x)|2).
We now deduce a more explicit version of Fourier inversion on L2, which can be stated

as follows.

Theorem 2 Suppose that f ∈ L2(R). Then f̂(ξ)1[−N,N ](ξ) is in L2(R) ∩ L1(R) and

sN(x) =
1

2π

∫ N

−N
f̂(ξ)eixξdξ

satisfies
lim
N→∞

‖f − sN‖L2 = 0

To begin the proof of Theorem 2, consider f ∈ L2(R). Then by Corollary 2, f̂ ∈ L2(R)
and hence, by the Cauchy-Schwarz inequality, f̂ 1[−N,N ] ∈ L1(R) ∩ L2(R). We will apply a
proposition analogous to Proposition 1 (with exactly the same proof).

Proposition 2 If h ∈ L1(R) ∩ L2(R), then the inverse Fourier tranform obtained by conti-
nuity in the L2 norm coincides with the L1 definition:

G(h)(x) =
1

2π

∫ ∞
−∞

h(ξ)eixξdξ

Let h = f̂ 1[−N,N ]. Then h ∈ L1(R) ∩ L2(R) and Proposition 2 implies

sN(x) = G(h)(x)

Since h ∈ L2(R), we also have sN ∈ L2(R), and we may take the Fourier transform and
apply Theorem 4 to obtain

ŝN(ξ) = h(ξ) = f̂(ξ)1[−N,N ](ξ)
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Finally, applying the formula in Corollary 2

2π‖f − sN‖22 = ‖f̂ − ŝN‖22 =

∫
|ξ|>N

|f̂(ξ)|2dξ → 0 as N →∞

(The last step uses the dominated convergence theorem with majorant |f̂(ξ|2.) This ends
the proof of Theorem 2.

Our last task is to find a Fourier inversion formula on L1(R).

Theorem 3 Let f ∈ L1(R) and denote

σN(x) =
1

2π

∫ N

−N
(1− |ξ/N |)+f̂(ξ)eixξdξ

Then
lim
N→∞

‖f − σN‖L1 = 0

Corollary 5 If f ∈ L1(R), and f̂ = 0, then f = 0.

The idea of the proof of Theorem 3 is parallel to the case of Fourier series. Note that
Fubini’s theorem implies that for f and g in L1(R),

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ) (2)

We will show that
σN(x) = f ∗ FN(x) (3)

for a function FN , known (as in the the case of the circle group) as the Fejér kernel.

Theorem 4 (Approximate identity) If K ∈ L1(R), Kε(x) = (1/ε)Kε(x), and∫ ∞
−∞

K(x) dx = 1

then ‖Kε ∗ f − f‖1 → 0 for all f ∈ L1(R).
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Consider K(x) = F1(x), Kε = F1/ε with ε = 1/N . It will suffice to show that K = F1 is
integrable with integral 1. In fact, we will find that F1(x) > 0 and∫

R
|F1(x)|dx =

∫
R
F1(x)dx = F̂1(0) = 1 (4)

Thus the approximate identity theorem implies that ‖σN − f‖1 → 0 as N → ∞ for all
f ∈ L1(R).

We will find the formula for FN using the identity

F̂N(ξ) = (1− |ξ/N |)+

This function has the shape of a triangle. It has a very simple relationship with change of
scale, namely, F̂N(ξ) = F̂1(ξ/N) and by change of variables, FN(x) = NF1(Nx). One can
easily compute F1 and hence FN using the inverse Fourier transform formula and integration
by parts, but we prefer to derive its fomula by a more circuitous route that will enable us to
see why FN(x) is essentially the square of DN(x), the Dirichlet kernel.

Define
D̂N(ξ) = 1[−N,N ](ξ)

Then Proposition 2 gives

DN(x) =
1

2π

∫ N

−N
eixξ dξ =

eixξ

2πix

∣∣∣∣N
−N

=
sinNx

πx

DN is known as the Dirichlet kernel (analogous to the one for Fourier series).

sN(x) = f ∗DN(x); ŝN(ξ) = f̂(ξ)1[−N,N ](ξ)

(Note that DN(x)2 ≤ 1/|x|2 as |x| → ∞ so that DN ∈ L2(R). Thus f ∗DN(x) is a convergent
integral for every x, provided f ∈ L2(R).) We also remark that DN has the following scaling
properties.

DN(x) = ND1(Nx); D̂N(ξ) = D̂1(ξ/N)

As in the case of Fourier series, it does not work to approximate f by sN(x) for f ∈ L1(R).
By inspection, we see that |DN(x)| has the size of 1/|x| as |x| → ∞ so that DN /∈ L1(R).
Even figuring out exactly what f ∗DN(x) means for f ∈ L1(R) is delicate and beyond the
scope of this course.
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So instead of DN , we work out the formula for the Fejér kernel FN . Since D̂1/2(ξ) =
1[−1/2,1/2], we have the convolution formula

D̂1/2 ∗ D̂1/2(ξ) = (1− |ξ|)+ = F̂1(ξ)

Because the inverse Fourier transform is 1/2π times the Fourier transform (with a sign
change) a formula equivalent to (2) says

G(f ∗ g) = 2πG(f)G(g)

Apply this with f = g = 1[−1/2,1/2] = D̂1/2, then

F1 = G(f ∗ g) = 2πG(f)G(g) = 2πD2
1/2

In other words,

F1(x) = 2π
sin2(x/2)

(πx)2
=

2 sin2(x/2)

πx2

Next we rescale. Since F̂N(ξ) = F̂1(ξ/N), we have

FN(x) = NF1(Nx) =
2N sin2(Nx/2)

π(Nx)2
=

2 sin2(Nx/2)

πNx2

The only feature of the explicit formula for FN(x) that we need is FN(x) > 0. Since F̂N(0) =
1, (4) follows.

The last step in the proof is to confirm (3). If f ∈ L1(R), then f̂ is continuous and by
definition,

σN(x) =
1

2π

∫ N

−N
f̂(ξ)(1− |ξ/N |)eixξ dξ =

1

2π

∫
R

∫
R
f(y)e−iyξ dy (1− |ξ/N |)eixξ dξ

The majorant |f(y)|(1− |ξ/N |)+ is integrable with respect to dydξ so Fubini’s theorem and
Theorem 2 applied to FN imply

σN(x) =

∫
R
f(y)

1

2π

∫
R
(1− |ξ/N |)+ei(x−y)ξdξ dy = f ∗ FN(x)

As a final remark, we double check our arithmetic in the computation of FN as follows.

FN(0) =
1

2π

∫ N

−N
(1− |ξ/N |) dξ

6



The integral on the right is 1/2π times the area of the triangle of base 2N and height 1, so
the total is N/2π. The left side is

FN(0) = lim
x→0

2 sin2(Nx/2)

πNx2
= lim

x→0

2(Nx/2)2

πNx2
= N/2π
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