### 18.103 Fall 2013

## Problem Set 8

1. Let $f \in L^{1}(\mathbb{R} / 2 \pi \mathbb{Z})$, and let $\sigma_{N}$ denote the Cesaro mean of its Fourier series. Prove that if $f$ has a left and right limit at $x$, then

$$
\sigma_{N}(x) \rightarrow\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right) / 2 \text { as } N \rightarrow \infty
$$

(You may use the formula from lecture for $F_{N}$ such that $\sigma_{N}(x)=f * F_{N}(x)$.)
Hint: Formulate and prove a variant of the "approximate identity" lemma, with stronger hypotheses on $K_{N}$ in exchange for weaker properties of $f$, and confirm the stronger properties of $F_{N}$ that you need.
2. Consider the Fourier series for $f$ from 2a PS7 at $x=0$ and $x=\pi ; g$ from 2 b at $x=0$; $h$ from 2c at $x=\pi / 2$. What are the consequences of the theorems in problems 3 PS7 and problem 1 above at these points?
3. Let $R_{N}$ denote the $2^{N}$ dyadic intervals of $[0,1)$ of length $2^{-N}$, that is,

$$
R_{N}=\left\{I=\left[(k-1) / 2^{N}, k / 2^{N}\right): k=1,2, \ldots, 2^{N}\right\}
$$

Consider

$$
V_{N}=\operatorname{span}\left\{1_{I}: I \in R_{N}\right\}
$$

Let $P_{N}: L^{2}([0,1]) \rightarrow V_{N}$ be the orthogonal projection onto $V_{N}$, that is, the mapping such that $P_{N} f=f$ for all $f \in V_{N}$ and $P_{N} f \perp\left(f-P_{N} f\right)$ for all $f \in L^{2}([0,1])$.
a) Find the formula for $a_{I}$ (in terms of $I$ and $f$ ) such that

$$
P_{N} f=\sum_{I \in R_{N}} a_{I} 1_{I}
$$

and show that $P_{N} f$ tends uniformly (on $\left.[0,1)\right)$ to $f$ for all $f \in C([0,1])$.
b) Let $1 \leq p<\infty$. Show that $P_{N} f$ tends to $f$ in $L^{p}([0,1])$ for every $f \in L^{p}([0,1])$.
c) For $f \in L^{1}([0,1])$, find the formula for $P_{0} f$ and $P_{N+1} f-P_{N} f$ in terms of $\left\langle f, H_{n, k}\right\rangle$ and $H_{n, k}$, the Haar functions defined in AG $\S 3.3 / 11$, pp. 136-137. Warning: identify the misprint in part (a) p. 13\%. Deduce that the Haar functions form a complete orthonormal system of $L^{2}([0,1])$.
4. a) Do AG $\S 3.3 / 9$, p. 136 (Gram-Schmidt process).
b) Use power series to show that every function $e^{i n x}$ can be uniformly approximated on $[-\pi, \pi]$ by polynomials (ordinary polynomials in $x$ ).
c) Deduce from (b) that polynomials are dense in $L^{2}([-\pi, \pi])$.
d) Denote by $\psi_{0}, \psi_{1}, \ldots$, the functions obtained from the Gram-Schmidt process applied to the polynomials $f_{0}(x)=1, f_{1}(x)=x, f_{2}(x)=x^{2}, \ldots$. Show that these form an orthonormal basis of $L^{2}([-\pi, \pi])$ and compute the first three. (The answers on $[-1,1]$ are listed in AG §3.3/10 p. 136.)

Show further that the degree of $\psi_{n}$ is $n$ and that $\psi_{n}$ is even if $n$ is even and odd if $n$ is odd.
e) Show by integration by parts that

$$
R_{n}(x)=\frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

is orthogonal to $1, x, \ldots, x^{n-1}$ in $L^{2}([-1,1])$ and $R_{n}(1)=2^{n} n$ !. (Hint: $x^{2}-1=(x-1)(x+1)$.)
f) The Legendre polynomials are defined as the polynomials $P_{n}(x)=R_{n}(x) / 2^{n} n!$.

In other words, they are normalized 1 so that $P_{n}(1)=1$. Show how your formulas for $\psi_{n}$, $n=0,1,2$ in (c) match this formula for $P_{n}$.
5. Define the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ on the $(x, y)$-plane.
a) Show that in polar coordinates $(x=r \cos \theta, y=r \sin \theta)$,

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

b) Let $f \in C(\mathbb{R} / 2 \pi \mathbb{Z})$. Define $u$ in polar coordinates by

$$
u(r, \theta)=\sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e^{i n \theta}, \quad 0 \leq r<1
$$

Express $u$ as a series in $z=x+i y$ and $\bar{z}=x-i y$. Confirm that $u$ is infinitely differentiable in $x^{2}+y^{2}<1$ and that $\Delta u=0$ for $0 \leq r<1$. Solutions to $\Delta u=0$ are known as harmonic functions.

[^0]Remark. One should think of $f(\theta)$ as a function on the unit circle $\left\{e^{i \theta}: \theta \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$ in the complex plane and $u$ is a function of $z=r e^{i \theta}$ in the unit disk. Then $u$ is the harmonic function with boundary values $f$, as we now prove.
c) Compute the Poisson kernel $P_{r}$ satisfying

$$
u(r, \theta)=f * P_{r}(\theta)
$$

Prove that if $f \in C(\mathbb{R} / 2 \pi \mathbb{Z})$, then

$$
\max _{\theta}|u(r, \theta)-f(\theta)| \rightarrow 0 \quad \text { as } r \rightarrow 1^{-}
$$

If $f \in L^{1}(\mathbb{R} / 2 \pi \mathbb{Z})$, then

$$
\lim _{r \rightarrow 1^{-}} \int_{[-\pi, \pi]}\left|f * P_{r}(\theta)-f(\theta)\right| d \theta=0
$$

d) (Extra credit) Prove that if $f$ is continuous, then $u$ extends to a continuous function on the closed unit disk. $\underline{2}$ In other words,

$$
u\left(r_{j}, \theta_{j}\right) \rightarrow f(\theta)
$$

whenever $r_{j} \rightarrow 1^{-}$and $\theta_{j} \rightarrow \theta$.

[^1]MIT OpenCourseWare
http://ocw.mit.edu

### 18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


[^0]:    ${ }^{1}$ The functions $\varphi_{n}$ of AG $\S 3.3 / 10$ p. 136 indexed starting from $n=1$ and with the normalization that the $L^{2}$ norm on $[-1,1]$ is 1 differ from the customary notation for Legendre polynomials $P_{n}$. Further properties (not assigned) are as follows.

    $$
    \sum_{n=0}^{\infty} P_{n}(x) z^{n}=\frac{1}{\sqrt{1-2 x z+z^{2}}} \quad \text { (generating function) }
    $$

    Recurrence formula and $L^{2}$ norm:

    $$
    (n-1) P_{n}(x)=(2 n-1) x P_{n-1}(x)-n P_{n-2} ; \quad \int_{-1}^{1} P_{n}(x)^{2} d x=2 /(2 n+1) .
    $$

[^1]:    ${ }^{2}$ Given that $u$ is continuous in the closed disk, one can prove that $u$ is unique using what is known as the maximum principle. The maximum principle (for the disk) says that if $v(z)$ is real-valued and continuous in $|z| \leq 1$ and harmonic in $|z|<1$, then

    $$
    \max _{|z| \leq 1} v(z) \leq \max _{|z|=1} v(z)
    $$

    Let $v$ be $\pm$ the difference of any two real-valued harmonic functions with the same boundary values, then by the maximum principle, $v=0$ and the two functions are the same. Using uniqueness for continuous boundary values, one can deduce uniqueness of $u$ with boundary values in the $L^{1}$ sense stated above.

