
18.103 Fall 2013

Problem Set 8

1. Let f ∈ L1(R/2πZ), and let σN denote the Cesaro mean of its Fourier series. Prove that
if f has a left and right limit at x, then

σN(x)→ (f(x+) + f(x−))/2 as N →∞

(You may use the formula from lecture for FN such that σN(x) = f ∗ FN(x).)
Hint: Formulate and prove a variant of the “approximate identity” lemma, with stronger
hypotheses on KN in exchange for weaker properties of f , and confirm the stronger properties
of FN that you need.

2. Consider the Fourier series for f from 2a PS7 at x = 0 and x = π; g from 2b at x = 0;
h from 2c at x = π/2. What are the consequences of the theorems in problems 3 PS7 and
problem 1 above at these points?

3. Let RN denote the 2N dyadic intervals of [0, 1) of length 2−N , that is,

RN = {I = [(k − 1)/2N , k/2N) : k = 1, 2, . . . , 2N}

Consider
VN = span {1I : I ∈ RN}

Let PN : L2([0, 1]) → VN be the orthogonal projection onto VN , that is, the mapping such
that PNf = f for all f ∈ VN and PNf ⊥ (f − PNf) for all f ∈ L2([0, 1]).

a) Find the formula for aI (in terms of I and f) such that

PNf =
∑
I∈RN

aI1I

and show that PNf tends uniformly (on [0, 1)) to f for all f ∈ C([0, 1]).

b) Let 1 ≤ p <∞. Show that PNf tends to f in Lp([0, 1]) for every f ∈ Lp([0, 1]).

c) For f ∈ L1([0, 1]), find the formula for P0f and PN+1f − PNf in terms of 〈f,Hn,k〉 and
Hn,k, the Haar functions defined in AG §3.3/11, pp. 136–137. Warning: identify the misprint
in part (a) p. 137. Deduce that the Haar functions form a complete orthonormal system of
L2([0, 1]).

4. a) Do AG §3.3/9, p. 136 (Gram-Schmidt process).

b) Use power series to show that every function einx can be uniformly approximated on
[−π, π] by polynomials (ordinary polynomials in x).

1



c) Deduce from (b) that polynomials are dense in L2([−π, π]).

d) Denote by ψ0, ψ1, . . . , the functions obtained from the Gram-Schmidt process applied to
the polynomials f0(x) = 1, f1(x) = x, f2(x) = x2, . . . . Show that these form an orthonormal
basis of L2([−π, π]) and compute the first three. (The answers on [−1, 1] are listed in AG
§3.3/10 p. 136.)

Show further that the degree of ψn is n and that ψn is even if n is even and odd if n is odd.

e) Show by integration by parts that

Rn(x) =
dn

dxn
(x2 − 1)n

is orthogonal to 1, x, . . . , xn−1 in L2([−1, 1]) and Rn(1) = 2nn!. (Hint: x2−1 = (x−1)(x+1).)

f) The Legendre polynomials are defined as the polynomials Pn(x) = Rn(x)/2nn!.

In other words, they are normalized1 so that Pn(1) = 1. Show how your formulas for ψn,
n = 0, 1, 2 in (c) match this formula for Pn.

5. Define the Laplace operator ∆ =
∂2

∂x2
+

∂2

∂y2
on the (x, y)-plane.

a) Show that in polar coordinates (x = r cos θ, y = r sin θ),

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

b) Let f ∈ C(R/2πZ). Define u in polar coordinates by

u(r, θ) =
∞∑

n=−∞

r|n|f̂(n)einθ, 0 ≤ r < 1

Express u as a series in z = x+ iy and z̄ = x− iy. Confirm that u is infinitely differentiable
in x2 + y2 < 1 and that ∆u = 0 for 0 ≤ r < 1. Solutions to ∆u = 0 are known as harmonic
functions.

1The functions ϕn of AG §3.3/10 p. 136 indexed starting from n = 1 and with the normalization that the
L2 norm on [−1, 1] is 1 differ from the customary notation for Legendre polynomials Pn. Further properties
(not assigned) are as follows.

∞∑
n=0

Pn(x)zn =
1√

1− 2xz + z2
(generating function)

Recurrence formula and L2 norm:

(n− 1)Pn(x) = (2n− 1)xPn−1(x)− nPn−2;
∫ 1

−1

Pn(x)2dx = 2/(2n + 1).
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Remark. One should think of f(θ) as a function on the unit circle {eiθ : θ ∈ R/2πZ} in
the complex plane and u is a function of z = reiθ in the unit disk. Then u is the harmonic
function with boundary values f , as we now prove.

c) Compute the Poisson kernel Pr satisfying

u(r, θ) = f ∗ Pr(θ)

Prove that if f ∈ C(R/2πZ), then

max
θ
|u(r, θ)− f(θ)| → 0 as r → 1−

If f ∈ L1(R/2πZ), then

lim
r→1−

∫
[−π,π]

|f ∗ Pr(θ)− f(θ)| dθ = 0

d) (Extra credit) Prove that if f is continuous, then u extends to a continuous function on
the closed unit disk.2 In other words,

u(rj, θj)→ f(θ)

whenever rj → 1− and θj → θ.

2Given that u is continuous in the closed disk, one can prove that u is unique using what is known as the
maximum principle. The maximum principle (for the disk) says that if v(z) is real-valued and continuous in
|z| ≤ 1 and harmonic in |z| < 1, then

max
|z|≤1

v(z) ≤ max
|z|=1

v(z)

Let v be ± the difference of any two real-valued harmonic functions with the same boundary values, then
by the maximum principle, v = 0 and the two functions are the same. Using uniqueness for continuous
boundary values, one can deduce uniqueness of u with boundary values in the L1 sense stated above.
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