18.103 Fall 2013

Problem Set 5

AG §2.5, pp 100–102: 11, 13 (With 13, say what hypothesis of Theorem 11, page 95, failed.) AG §2.6, pp 108–110: 2, 4, 5, 7, 8.

Further exercises

1. Consider the probability space (I, \mathcal{M}, μ) where I is the unit interval, \mathcal{M} is the σ -field of Lebesgue measurable sets, and μ is Lebesgue measure. Find three subsets, A_i , i = 1, 2, 3, that are not independent, but which are pairwise independent.

2. Another frequently used version of Fubini's Theorem

a) Correct the statement of the following theorem by adding the missing hypothesis on μ and ν (c.f. 2.5/13). Then deduce it from the other versions of Fubini's theorem.

Theorem 0.1 (Fubini, almost correct version 4) Suppose that f(x, y) is a measurable function on $X \times Y$. Suppose further that

$$\int_{Y} \left[\int_{X} |f(x,y)| d\mu(x) \right] d\nu(y) < \infty \tag{*}$$

Then f is integrable (with respect to $\mu \times \nu$ on $X \times Y$) and

$$\int_{Y} \left[\int_{X} f(x,y) d\mu(x) \right] d\nu(y) = \int_{X} \left[\int_{Y} f(x,y) d\nu(y) \right] d\mu(x) = \int_{X \times Y} f d(\mu \times \nu) \tag{**}$$

b) Consider the function in 2.5/12

$$f(x,y) = \frac{xy}{(x^2 + y^2)^2}$$

on the sets X = [-1, 1] and Y = [0, 1] with μ and ν Lebesgue measure. Show that in this case hypothesis (*) above fails, the left-hand (iterated) integral in (**) exists while the other two do not. In particular, 2.5/12a is deceptive, the result of symmetry, not Fubini's theorem.

MIT OpenCourseWare http://ocw.mit.edu

18.103 Fourier Analysis Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.