Problem Set 3

AG §1.4, pp 49-52: 10, 19. (Problem 10 elaborates on the meaning of independence. Problem 19 shows that there is no model of Bernoulli trials in a countable probability space.)

AG §2.1, pp 58-60: 2, 3.
AG §2.2, pp 69-72: 1, 3, 5, 9
(Problem *) Existence of a set of real numbers that is not Lebesgue measurable
Notations. Let \mathbf{R} denote the real numbers and \mathbf{Q} the rational numbers. As in $\S 1.3 / 14$, if $E \subset \mathbf{R}$, denote

$$
E+c=\{x+c: x \in E\}
$$

Let $I=[0,1)$, the half-open interval.
a) Show that there exists a set $E \subset I$ such that for every $x \in \mathbf{R}$ there exists a unique $x^{\prime} \in E$ such that $x-x^{\prime} \in \mathbf{Q}$. (This step uses the axiom of choice.)
b) Show that if q_{1} and q_{2} are distinct rational numbers, then $\left(E+q_{1}\right) \cap\left(E+q_{2}\right)=\emptyset$.
c) Show that

$$
[0,1) \subset \bigcup_{q \in \mathbf{Q},|q| \leq 1} E+q \subset[-1,2),
$$

d) Deduce that E is not Lebesgue measurable.

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

