Problem Set 2, updated version

[If you did not hand in AG §1.1: 18 and 19 with Problem Set 1, then do so with Problem Set 2.]

AG §1.1, pp. 11-14: 21.
AG §1.3, pp 39-42: 6, 10, 14, 17.
AG §1.4, pp. 49-52: 3, 5, 17.
Update: Here's the extra exercise that was promised. Show that if

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

with probability 1 , then for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left\{\left|X_{n}\right|>\epsilon\right\}\right)=0
$$

(For example, if $X_{n}=S_{n} / n, S_{n}=R_{1}+\cdots+R_{n}$, then this says that the conclusion of the strong law of large numbers implies the conclusion of the weak law of large numbers. Hint: Use countable additivity.)

Hint for $\S 1.3 / 10$: Given a Cauchy sequence A_{k}, choose a subsequence $B_{j}=A_{k_{j}}$ with a geometric rate of convergence. Then let

$$
A=\limsup B_{j} \equiv \bigcap_{\ell=1}^{\infty} \bigcup_{j \geq \ell} B_{j}
$$

and show that A_{k} tends to A.
Remark on $\S 1.4 / 17$: Use a base 4 expansion to make a probabilistic model representing the random walk in the plane.

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

