18.103 Fall 2013

Problem Set 10

Do AG §3.5/9, 11, 12.

1. a) Let $f \in L^{p}(\mathbb{R}), 1<p<\infty$ and $g \in L^{1}(\mathbb{R})$. Show that

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1}
$$

Hint: Let $1 / p+1 / q=1$, and apply Hölder's inequality to

$$
|f(x-y) g(y)|=\left(|f(x-y)||g(y)|^{1 / p}\right)\left(|g(y)|^{1 / q}\right)
$$

(See Prop 17, AG Appendix B.) Note that this inequality is also true for $p=1$, using Fubini's theorem carried out in $\S 3.5 / 9$, and for $p=\infty$, using more elementary properties of the Lebesgue integral.
b) Deduce that if $f \in L^{p}(\mathbb{R}), 1 \leq p<\infty$ and $K \in L^{1}(\mathbb{R})$ with

$$
\int_{\mathbb{R}} K(x) d x=1 ; \quad K_{\epsilon}(x)=(1 / \epsilon) K(x / \epsilon)
$$

then

$$
\lim _{\epsilon \rightarrow 0}\left\|f * K_{\epsilon}-f\right\|_{p}=0
$$

c) Show that if $f \in L^{\infty}(\mathbb{R})$ and $K \in L^{1}(\mathbb{R})$, then $f * K \in C_{\text {ucb }}(\mathbb{R})$, where $C_{\text {ucb }}(\mathbb{R})$ is the class of uniformly continuous functions bounded functions. (See also Fourier series notes 3, where the analogous statement on \mathbb{T} is mentioned as an exercise, with a hint as to how it is proved.)
d) Give a counterexample to the statement in part b) in the case $p=\infty$.
2. We will solve the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+a \frac{\partial}{\partial x} u \tag{1}
\end{equation*}
$$

for a function $u(x, t)$ with initial value

$$
u(x, 0)=f(x)
$$

This is interpreted as a heat equation or diffusion equation with drift (the $a(\partial / \partial x)$ term is the drift).
a) Denote by $\hat{u}(\xi, t)$ and $\hat{f}(\xi)$ the Fourier transform in the x variable of u and f. For each fixed ξ find the ordinary differential equation for $\hat{u}(\xi, t)$ formally (assuming the derivatives all make sense). Then solve the equation for \hat{u} in terms of \hat{f}.
b) Take the inverse Fourier transform of your formula for $\hat{u}(\xi, t)$ in part (a), and find a proposed formula for u in terms of f in the form

$$
u(x, t)=f * g_{t}(x)
$$

(See $\S 3.5 / 10$ for the formula for g_{t} in the case $a=0$.)
c) Show that the formula in part (b) solves the initial value problem. Namely, for $f \in L^{1}, u$ given by the formula in (b) satisfies the differential equation (1) in $t>0, x \in \mathbb{R}$, and satisfies the initial condition in the sense that

$$
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}|u(x, t)-f(x)| d x=0 \quad(t>0)
$$

3. (See also §3.5/6; SS Chap 5/ Exercise 23, p. 168-169.) Define

$$
T f(y)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i x y} d x
$$

a) Show that $T^{4}=I$ the identity mapping on \mathcal{S}, the Schwartz class. (This extends by continuity to $L^{2}(\mathbb{R})$. Recall that we proved in lecture that T maps \mathcal{S} to \mathcal{S}. The Plancherel formula says that T is an isometry in the $L^{2}(\mathbb{R})$ norm. We also showed in lecture that, since \mathcal{S} is dense in L^{2}, one can extend T by continuity to the whole space $L^{2}(\mathbb{R})$, where it is again an isometry.)
b) Suppose that $h \in \mathcal{S}$ and $T h=c h$ (an eigenvector for T with eigenvalue c). Find the short list of possible values of c. (See SS, p. 163, 6.)
c) Consider the so-called annihilation and creation operators A and B defined by

$$
A=\frac{d}{d x}+x ; \quad B=-\frac{d}{d x}+x
$$

and denote the $L^{2}(\mathbb{R})$ inner product by

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(x) \overline{g(x)} d x
$$

Show that for all f and g in $\mathcal{S},\langle A f, g\rangle=\langle f, B g\rangle$. This says that $B=A^{*}$, the adjoint of A, and $A^{*}=B$.
d) Find numbers a and b such that

$$
T A=a A T ; \quad T B=b B T
$$

e) Let $h_{0}(x)=e^{-x^{2} / 2}$ and $h_{k}=B^{k} h_{0}$. Show that $h_{k}(x)=H_{k}(x) e^{-x^{2} / 2}$ with H_{k} a polynomial \underline{l}^{1} of degree k and that

$$
T h_{k}=\lambda_{k} h_{k}
$$

[^0]for some λ_{k}. (Find λ_{k} explicitly.)
f) Show that the $h_{k} /\left\|h_{k}\right\|$ (with $\|\cdot\|$ the $L^{2}(\mathbb{R})$ norm) form a complete orthogonal system. (Hint: Consider $\left\langle B^{k} h_{0}, B^{\ell} h_{0}\right\rangle$. Use part (c) and the commutator formula $\left[A, B^{n}\right]=n c B^{n-1}$. Incidentally, the Hermite polynomials can also be obtained by applying the Gram-Schmidt process to the functions $1, x, x^{2}, x^{3}$, etc, in $L^{2}\left(\mathbb{R}, e^{-x^{2}} d x\right)$.)

MIT OpenCourseWare
http://ocw.mit.edu

18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1} H_{k}$ is known as a Hermite polynomial. Its generating function and other closely related formulas can be found in SS p. 173.

