Lecture 6

We begin with a review of some earlier definitions. Let $\delta > 0$ and $a \in \mathbb{R}^n$.

Euclidean ball:
$$B_{\delta}(a) = \{x \in \mathbb{R}^n : || x - a || < \delta\}$$
 (2.66)

Supremum ball:
$$R_{\delta}(a) = \{x \in \mathbb{R}^n : |x - a| < \delta\}$$

= $I_1 \times \cdots \times I_n, \ I_j = (a_j - \delta, a_j + \delta).$ (2.67)

Note that the supremum ball is actually a rectangle. Clearly, $B_{\delta}(a) \subseteq R_{\delta}(a)$. We use the notation $B_{\delta} = B_{\delta}(0)$ and $R_{\delta} = R_{\delta}(0)$.

Continuing with our review, given U open in \mathbb{R}^n , a map $f: U \to \mathbb{R}^k$, and a point $a \in U$, we defined the derivate $Df(a): \mathbb{R}^n \to \mathbb{R}^k$ which we associated with the matrix

$$Df(a) \sim \left[\frac{\partial f_i}{\partial x_j}(a)\right],$$
 (2.68)

and we define

$$|Df(a)| = \sup_{i,j} \left| \frac{\partial f_i}{\partial x_j}(a) \right|.$$
(2.69)

Lastly, we define $U \subseteq \mathbb{R}^n$ to be *convex* if

$$a, b \in U \implies (1-t)a + tb \in U \text{ for all } 0 \le t \le 1.$$
 (2.70)

Before we state and prove the Inverse Function Theorem, we give the following definition.

Definition 2.13. Let U and V be open sets in \mathbb{R}^n and $f: U \to V$ a \mathcal{C}^r map. The map f is a \mathcal{C}^r diffeomorphism if it is bijective and $f^{-1}: V \to U$ is also \mathcal{C}^r .

Inverse Function Theorem. Let U be an open set in \mathbb{R}^n , $f: U \to \mathbb{R}^n$ a \mathcal{C}^r map, and $a \in U$. If $Df(a): \mathbb{R}^n \to \mathbb{R}^n$ is bijective, then there exists a neighborhood U_1 of a in U and a neighborhood V of f(a) in \mathbb{R}^n such that $F|U_1$ is a \mathcal{C}^r diffeomorphism of U_1 at V.

Proof. To prove this we need some elementary multi-variable calculus results, which we provide with the following lemmas.

Lemma 2.14. Let U be open in \mathbb{R}^n and $F: U \to \mathbb{R}^k$ be a \mathcal{C}^1 mapping. Also assume that U is convex. Suppose that $|Df(a)| \leq c$ for all $A \in U$. Then, for all $x, y \in U$,

$$|f(x) - f(y)| \le nc|x - y|.$$
(2.71)

Proof. Consider any $x, y \in U$. The Mean Value Theorem says that for every *i* there exists a point *c* on the line joining *x* to *y* such that

$$f_i(x) - f_i(y) = \sum_j \frac{\partial f_i}{\partial x_j} (d) (x_j - y_j).$$
(2.72)

It follows that

$$|f_{i}(x) - f_{i}(y)| \leq \sum_{j} \left| \frac{\partial f_{i}}{\partial x_{j}}(d) \right| |x_{j} - y_{j}|$$

$$\leq \sum_{j} c|x_{j} - y_{j}|$$

$$\leq nc|x - y|$$
(2.73)

This is true for each *i*, so $|f(x) - f(y)| \le nc|x - y|$

Lemma 2.15. Let U be open in \mathbb{R}^n and $f: U \to \mathbb{R}$ a \mathcal{C}^1 map. Suppose f takes a minimum value at some point $b \in U$. Then

$$\frac{\partial f}{\partial x_i}(b) = 0, \ i = 1, \dots, n.$$
(2.74)

Proof. We reduce to the one-variable result. Let $b = (b_1, \ldots, b_n)$ and let $\phi(t) = f(b_1, \ldots, b_{i-1}, t, b_{i+1}, \ldots, b_n)$, which is C^1 near b_1 and has a minimum at b_i . We know from one-variable calculus that this implies that $\frac{\partial \phi}{\partial t}(b_i) = 0$.

In our proof of the Inverse Function Theorem, we want to show that f is locally a diffeomorphism at a. We will make the following simplifying assumptions:

$$a = 0, f(a) = 0, Df(0) = I$$
 (identity). (2.75)

Then, we define a map $g: U \to \mathbb{R}^n$ by g(x) = x - f(x), so that we obtain the further simplification

$$Dg(0) = Df(0) - I = 0. (2.76)$$

Lemma 2.16. Given $\epsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in R_{\delta}$,

$$|g(x - g(y))| < \epsilon |x - y|.$$
(2.77)

Proof. The result that Dg(0) = 0 implies that there exists $\delta > 0$ such that for any $x \in R_{\delta}, |Dg(x)| \leq \epsilon/n$. Applying the first lemma, the proof is complete. \Box

Now, remember that g(x) = x - f(x). Take any $x, y \in R_{\delta}$. Then

$$\begin{aligned} x - y &= x - f(x) + f(x) - f(y) + f(y) - y \\ &= g(x) - g(y) + f(x) - f(y). \end{aligned}$$
(2.78)

Using the Triangle Inequality we obtain

$$|x - y| \le |g(x) - g(y)| + |f(x) - f(y)|$$
(2.79)

Using the previous lemma, we find that

$$(1-\epsilon)|x-y| \le |f(x) - f(y)|.$$
(2.80)

We choose δ such that $\epsilon > 1/2$, so that

$$|x - y| \le 2|f(x) - f(y)|.$$
(2.81)

This proves that $f: R_{\delta} \to \mathbb{R}^n$ is one-to-one.

We also want to prove that f is onto. We have Df(0) = I, so $\det(\frac{\partial f_i}{\partial x_j}(0)) = 1$. We can choose δ such that for any $x \in R_{\delta}$,

$$\det\left(\frac{\partial f_i}{\partial x_j}(x)\right) > \frac{1}{2}.$$
(2.82)

Lemma 2.17. If $y \in B_{\delta/4}$, than there exists a point $c \in R_{\delta}$ such that f(c) = y.

Proof. Let $h : \bar{R}_{\delta} \to \mathbb{R}$ be a map defined by $h(x) = ||f(x) - y||^2$. The domain \bar{R}_{δ} is compact, so h has a minimum at some point $c \in \bar{R}_{\delta}$.

Claim. The point c is an interior point. That is, $c \in R_{\delta}$.

Proof. For any $x \in \overline{R}_{\delta}$, $|x| = \delta$ implies that $|f(x) - f(0)| = |f(x)| \ge \delta/2$

$$\implies || f(x) || \ge \frac{\delta}{2}$$

$$\implies || f(x) - y || \ge \frac{\delta}{4}, \text{ when } x \in \text{Bd } R_{\delta}.$$

$$\implies h(x) \ge \left(\frac{\delta}{4}\right)^2.$$

(2.83)

At the origin, $h(0) = || f(0) - y ||^2 = || y ||^2 < (\delta/4)^2$, since $y \in B_{\delta/4}$. So, $h(0) \le h$ on Bd R_{δ} , which means that the minimum point c of h is in R_{δ} . This ends the proof of the claim.

Now that we know that the minimum point c occurs in the interior, we can apply the second lemma to h to obtain

$$\frac{\partial h}{\partial x_j}(c) = 0, \quad j = 1, \dots, n.$$
(2.84)

From the definition of h,

$$h(x) = \sum_{i=1}^{n} (f_i(c) - y_i) \frac{\partial f_i}{\partial x_j}(c) = 0, \ i = 1, \dots, n,$$
(2.85)

 \mathbf{SO}

$$\frac{\partial h}{\partial x_j}(c) = 2\sum_{i=1}^n (f_i(c) - y_i) \frac{\partial f_i}{\partial x_j}(c) = 0, \ i = 1, \dots, n.$$
(2.86)

Note that

$$\det\left[\frac{\partial f_i}{\partial x_j}(c)\right] \neq 0, \tag{2.87}$$

so, by Cramer's Rule,

$$f_i(c) - y_i = 0, \ i = 1, \dots, n.$$
 (2.88)

Let $U_1 = R_{\delta} \sim f^{-1}(B_{\delta/4})$, where we have chosen $V = B_{\delta/4}$. We have shown that f is a bijective map.

Claim. The map $f^{-1}: V \to U_1$ is continuous.

Proof. Let $a, b \in V$, and define $x = f^{-1}(a)$ and $y = f^{-1}(b)$. Then a = f(x) and b = f(y).

$$|a-b| = |f(x) - f(y)| \ge \frac{\partial |x-y|}{\partial 2}, \qquad (2.89)$$

 \mathbf{SO}

$$|a-b| \ge \frac{1}{2} |f^{-1}(a) - f^{-1}(b)|.$$
(2.90)

This shows that f^{-1} is continuous on $V = B_{\delta/4}$.

As a last item for today's lecture, we show the following: Claim. The map f^{-1} is differentiable at 0, and $Df^{-1}(0) = I$.

Proof. Let $k \in \mathbb{R}^n - \{0\}$ and choose $k \doteq 0$. We are trying to show that

$$\frac{f^{-1}(0+k) - f^{-1}(0) - Df^{-1}(0)k}{|k|} \to 0 \text{ as } k \to 0.$$
(2.91)

We simplify

$$\frac{f^{-1}(0+k) - f^{-1}(0) - Df^{-1}(0)k}{|k|} = \frac{f^{-1}(k) - k}{|k|}.$$
(2.92)

Define $h = f^{-1}(k)$ so that k = f(h) and $|k| \le 2|h|$. To show that

$$\frac{f^{-1}(k) - k}{|k|} \to 0 \text{ as } k \to 0,$$
(2.93)

it suffices to show that

$$\frac{f^{-1}(k) - k}{|h|} \to 0 \text{ as } h \to 0.$$
 (2.94)

That is, it suffices to show that

$$\frac{h - f(h)}{|h|} \to 0 \text{ as } h \to 0.$$
(2.95)

But this is equal to

$$-\frac{f(h) - f(0) - Df(0)h}{|h|},$$
(2.96)

which goes to zero as $h \to 0$ because f is differentiable at zero.

The proof of the Inverse Function Theorem continues in the next lecture.