Lecture 6

We begin with a review of some earlier definitions.
Let $\delta>0$ and $a \in \mathbb{R}^{n}$.

$$
\begin{equation*}
\text { Euclidean ball: } B_{\delta}(a)=\left\{x \in \mathbb{R}^{n}:\|x-a\|<\delta\right\} \tag{2.66}
\end{equation*}
$$

$$
\text { Supremum ball: } \begin{align*}
R_{\delta}(a) & =\left\{x \in \mathbb{R}^{n}:|x-a|<\delta\right\} \\
& =I_{1} \times \cdots \times I_{n}, I_{j}=\left(a_{j}-\delta, a_{j}+\delta\right) . \tag{2.67}
\end{align*}
$$

Note that the supremum ball is actually a rectangle. Clearly, $B_{\delta}(a) \subseteq R_{\delta}(a)$. We use the notation $B_{\delta}=B_{\delta}(0)$ and $R_{\delta}=R_{\delta}(0)$.

Continuing with our review, given U open in \mathbb{R}^{n}, a map $f: U \rightarrow \mathbb{R}^{k}$, and a point $a \in U$, we defined the derivate $D f(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ which we associated with the matrix

$$
\begin{equation*}
D f(a) \sim\left[\frac{\partial f_{i}}{\partial x_{j}}(a)\right] \tag{2.68}
\end{equation*}
$$

and we define

$$
\begin{equation*}
|D f(a)|=\sup _{i, j}\left|\frac{\partial f_{i}}{\partial x_{j}}(a)\right| \tag{2.69}
\end{equation*}
$$

Lastly, we define $U \subseteq \mathbb{R}^{n}$ to be convex if

$$
\begin{equation*}
a, b \in U \Longrightarrow(1-t) a+t b \in U \text { for all } 0 \leq t \leq 1 \tag{2.70}
\end{equation*}
$$

Before we state and prove the Inverse Function Theorem, we give the following definition.

Definition 2.13. Let U and V be open sets in \mathbb{R}^{n} and $f: U \rightarrow V$ a \mathcal{C}^{r} map. The map f is is a \mathcal{C}^{r} diffeomorphism if it is bijective and $f^{-1}: V \rightarrow U$ is also \mathcal{C}^{r}.

Inverse Function Theorem. Let U be an open set in $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{n}$ a \mathcal{C}^{r} map, and $a \in U$. If $D f(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is bijective, then there exists a neighborhood U_{1} of a in U and a neighborhood V of $f(a)$ in \mathbb{R}^{n} such that $F \mid U_{1}$ is a \mathcal{C}^{r} diffeomorphism of U_{1} at V.

Proof. To prove this we need some elementary multi-variable calculus results, which we provide with the following lemmas.
Lemma 2.14. Let U be open in \mathbb{R}^{n} and $F: U \rightarrow \mathbb{R}^{k}$ be a \mathcal{C}^{1} mapping. Also assume that U is convex. Suppose that $|D f(a)| \leq c$ for all $A \in U$. Then, for all $x, y \in U$,

$$
\begin{equation*}
|f(x)-f(y)| \leq n c|x-y| . \tag{2.71}
\end{equation*}
$$

Proof. Consider any $x, y \in U$. The Mean Value Theorem says that for every i there exists a point c on the line joining x to y such that

$$
\begin{equation*}
f_{i}(x)-f_{i}(y)=\sum_{j} \frac{\partial f_{i}}{\partial x_{j}}(d)\left(x_{j}-y_{j}\right) \tag{2.72}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\left|f_{i}(x)-f_{i}(y)\right| & \leq \sum_{j}\left|\frac{\partial f_{i}}{\partial x_{j}}(d)\right|\left|x_{j}-y_{j}\right| \\
& \leq \sum_{j} c\left|x_{j}-y_{j}\right| \tag{2.73}\\
& \leq n c|x-y|
\end{align*}
$$

This is true for each i, so $|f(x)-f(y)| \leq n c|x-y|$
Lemma 2.15. Let U be open in \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ a \mathcal{C}^{1} map. Suppose f takes a minimum value at some point $b \in U$. Then

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}(b)=0, i=1, \ldots, n . \tag{2.74}
\end{equation*}
$$

Proof. We reduce to the one-variable result. Let $b=\left(b_{1}, \ldots, b_{n}\right)$ and let $\phi(t)=$ $f\left(b_{1}, \ldots, b_{i-1}, t, b_{i+1}, \ldots, b_{n}\right)$, which is \mathcal{C}^{1} near b_{1} and has a minimum at b_{i}. We know from one-variable calculus that this implies that $\frac{\partial \phi}{\partial t}\left(b_{i}\right)=0$.

In our proof of the Inverse Function Theorem, we want to show that f is locally a diffeomorphism at a. We will make the following simplifying assumptions:

$$
\begin{equation*}
a=0, \quad f(a)=0, \quad D f(0)=I \text { (identity). } \tag{2.75}
\end{equation*}
$$

Then, we define a map $g: U \rightarrow \mathbb{R}^{n}$ by $g(x)=x-f(x)$, so that we obtain the further simplification

$$
\begin{equation*}
D g(0)=D f(0)-I=0 \tag{2.76}
\end{equation*}
$$

Lemma 2.16. Given $\epsilon>0$, there exists $\delta>0$ such that for any $x, y \in R_{\delta}$,

$$
\begin{equation*}
\mid g(x-g(y)|<\epsilon| x-y \mid . \tag{2.77}
\end{equation*}
$$

Proof. The result that $D g(0)=0$ implies that there exists $\delta>0$ such that for any $x \in R_{\delta},|D g(x)| \leq \epsilon / n$. Applying the first lemma, the proof is complete.

Now, remember that $g(x)=x-f(x)$. Take any $x, y \in R_{\delta}$. Then

$$
\begin{align*}
x-y & =x-f(x)+f(x)-f(y)+f(y)-y \tag{2.78}\\
& =g(x)-g(y)+f(x)-f(y) .
\end{align*}
$$

Using the Triangle Inequality we obtain

$$
\begin{equation*}
|x-y| \leq|g(x)-g(y)|+|f(x)-f(y)| \tag{2.79}
\end{equation*}
$$

Using the previous lemma, we find that

$$
\begin{equation*}
(1-\epsilon)|x-y| \leq|f(x)-f(y)| . \tag{2.80}
\end{equation*}
$$

We choose δ such that $\epsilon>1 / 2$, so that

$$
\begin{equation*}
|x-y| \leq 2|f(x)-f(y)| . \tag{2.81}
\end{equation*}
$$

This proves that $f: R_{\delta} \rightarrow \mathbb{R}^{n}$ is one-to-one.
We also want to prove that f is onto. We have $D f(0)=I$, so $\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}(0)\right)=1$. We can choose δ such that for any $x \in R_{\delta}$,

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)>\frac{1}{2} \tag{2.82}
\end{equation*}
$$

Lemma 2.17. If $y \in B_{\delta / 4}$, than there exists a point $c \in R_{\delta}$ such that $f(c)=y$.
Proof. Let $h: \bar{R}_{\delta} \rightarrow \mathbb{R}$ be a map defined by $h(x)=\|f(x)-y\|^{2}$. The domain \bar{R}_{δ} is compact, so h has a minimum at some point $c \in R_{\delta}$.

Claim. The point c is an interior point. That is, $c \in R_{\delta}$.
Proof. For any $x \in \bar{R}_{\delta},|x|=\delta$ implies that $|f(x)-f(0)|=|f(x)| \geq \delta / 2$

$$
\begin{align*}
& \Longrightarrow\|f(x)\| \geq \frac{\delta}{2} \\
& \Longrightarrow\|f(x)-y\| \geq \frac{\delta}{4}, \text { when } x \in \operatorname{Bd} R_{\delta} . \tag{2.83}\\
& \Longrightarrow h(x) \geq\left(\frac{\delta}{4}\right)^{2} .
\end{align*}
$$

At the origin, $h(0)=\|f(0)-y\|^{2}=\|y\|^{2}<(\delta / 4)^{2}$, since $y \in B_{\delta / 4}$. So, $h(0) \leq h$ on $\mathrm{Bd} R_{\delta}$, which means that the minimum point c of h is in R_{δ}. This ends the proof of the claim.

Now that we know that the minimum point c occurs in the interior, we can apply the second lemma to h to obtain

$$
\begin{equation*}
\frac{\partial h}{\partial x_{j}}(c)=0, \quad j=1, \ldots, n \tag{2.84}
\end{equation*}
$$

From the definition of h,

$$
\begin{equation*}
h(x)=\sum_{i=1}^{n}\left(f_{i}(c)-y_{i}\right) \frac{\partial f_{i}}{\partial x_{j}}(c)=0, i=1, \ldots, n, \tag{2.85}
\end{equation*}
$$

SO

$$
\begin{equation*}
\frac{\partial h}{\partial x_{j}}(c)=2 \sum_{i=1}^{n}\left(f_{i}(c)-y_{i}\right) \frac{\partial f_{i}}{\partial x_{j}}(c)=0, i=1, \ldots, n \tag{2.86}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}(c)\right] \neq 0 \tag{2.87}
\end{equation*}
$$

so, by Cramer's Rule,

$$
\begin{equation*}
f_{i}(c)-y_{i}=0, i=1, \ldots, n \tag{2.88}
\end{equation*}
$$

Let $U_{1}=R_{\delta} \sim f^{-1}\left(B_{\delta / 4}\right)$, where we have chosen $V=B_{\delta / 4}$. We have shown that f is a bijective map.

Claim. The map $f^{-1}: V \rightarrow U_{1}$ is continuous.
Proof. Let $a, b \in V$, and define $x=f^{-1}(a)$ and $y=f^{-1}(b)$. Then $a=f(x)$ and $b=f(y)$.

$$
\begin{equation*}
|a-b|=|f(x)-f(y)| \geq \frac{\partial|x-y|}{\partial 2} \tag{2.89}
\end{equation*}
$$

so

$$
\begin{equation*}
|a-b| \geq \frac{1}{2}\left|f^{-1}(a)-f^{-1}(b)\right| \tag{2.90}
\end{equation*}
$$

This shows that f^{-1} is continuous on $V=B_{\delta / 4}$.
As a last item for today's lecture, we show the following:
Claim. The map f^{-1} is differentiable at 0 , and $D f^{-1}(0)=I$.
Proof. Let $k \in \mathbb{R}^{n}-\{0\}$ and choose $k \dot{=} 0$. We are trying to show that

$$
\begin{equation*}
\frac{f^{-1}(0+k)-f^{-1}(0)-D f^{-1}(0) k}{|k|} \rightarrow 0 \text { as } k \rightarrow 0 . \tag{2.91}
\end{equation*}
$$

We simplify

$$
\begin{equation*}
\frac{f^{-1}(0+k)-f^{-1}(0)-D f^{-1}(0) k}{|k|}=\frac{f^{-1}(k)-k}{|k|} . \tag{2.92}
\end{equation*}
$$

Define $h=f^{-1}(k)$ so that $k=f(h)$ and $|k| \leq 2|h|$. To show that

$$
\begin{equation*}
\frac{f^{-1}(k)-k}{|k|} \rightarrow 0 \text { as } k \rightarrow 0 \tag{2.93}
\end{equation*}
$$

it suffices to show that

$$
\begin{equation*}
\frac{f^{-1}(k)-k}{|h|} \rightarrow 0 \text { as } h \rightarrow 0 . \tag{2.94}
\end{equation*}
$$

That is, it suffices to show that

$$
\begin{equation*}
\frac{h-f(h)}{|h|} \rightarrow 0 \text { as } h \rightarrow 0 \tag{2.95}
\end{equation*}
$$

But this is equal to

$$
\begin{equation*}
-\frac{f(h)-f(0)-D f(0) h}{|h|}, \tag{2.96}
\end{equation*}
$$

which goes to zero as $h \rightarrow 0$ because f is differentiable at zero.
The proof of the Inverse Function Theorem continues in the next lecture.

