Lecture 38

We begin with a review from last time.
Let X be an oriented manifold, and let $D \subseteq X$ be a smooth domain. Then $\operatorname{Bd}(D)=Y$ is an oriented $(n-1)$-dimensional manifold.

We defined integration over D as follows. For $\omega \in \Omega_{c}^{n}(X)$ we want to make sense of the integral

$$
\begin{equation*}
\int_{D} \omega . \tag{6.161}
\end{equation*}
$$

We look at some special cases:
Case 1: Let $p \in \operatorname{Int} D$, and let $\phi: U \rightarrow V$ be an oriented parameterization of X at p, where $V \subseteq \operatorname{Int} D$. For $\omega \in \Omega_{c}^{n}(X)$, we define

$$
\begin{equation*}
\int_{D} \omega=\int_{V} \omega=\int_{U} \phi^{*} \omega=\int_{\mathbb{R}^{n}} \phi^{*} \omega . \tag{6.162}
\end{equation*}
$$

This is just our old definition for

$$
\begin{equation*}
\int_{V} \omega . \tag{6.163}
\end{equation*}
$$

Case 2: Let $p \in \operatorname{Bd}(D)$, and let $\phi: U \rightarrow V$ be an oriented parameterization of D at p. That is, ϕ maps $U \cap \mathbb{H}^{n}$ onto $V \cap D$. For $\omega \in \Omega_{c}^{n}(V)$, we define

$$
\begin{equation*}
\int_{D} \omega=\int_{\mathbb{H}^{n}} \phi^{*} \omega . \tag{6.164}
\end{equation*}
$$

We showed last time that this definition does not depend on the choice of parameterization.

General case: For each $p \in \operatorname{Int} D$, let $\phi: U_{p} \rightarrow V_{p}$ be an oriented parameterization of X at p with $V_{p} \subseteq \operatorname{Int} D$. For each $p \in \operatorname{Bd}(D)$, let $\phi: U_{p} \rightarrow V_{p}$ be and oriented parameterization of D at p. Let

$$
\begin{equation*}
U=\sum_{p \in D} U_{p}, \tag{6.165}
\end{equation*}
$$

where the set $\mathcal{U}=\left\{U_{p}: p \in D\right\}$ be an an open cover of U. Let $\rho_{i}, i=1,2, \ldots$, be a partition of unity subordinate to this cover.

Definition 6.46. For $\omega \in \Omega_{c}^{n}(X)$ we define the integral

$$
\begin{equation*}
\int_{D} \omega=\sum_{i} \int_{D} \rho_{i} \omega . \tag{6.166}
\end{equation*}
$$

Claim. The r.h.s. of this definition is well-defined.

Proof. Since the ρ_{i} 's are a partition of unity, there exists an N such that

$$
\begin{equation*}
\operatorname{supp} \omega \cap \operatorname{supp} \rho_{i}=\phi, \tag{6.167}
\end{equation*}
$$

for all $i>N$.
Hence, there are only a finite number of non-zero terms in the summand. Moreover, each summand is an integral of one of the two types above (cases 1 and 2), and is therefore well-defined.

Claim. The l.h.s. of the definition does not depend on the choice of the partition of unity ρ_{i}.

Proof. We proved an analogous assertion about the definition of $\int_{X} \omega$ a few lectures ago, and the proof of the present claim is exactly the same.

6.11 Stokes' Theorem

Stokes' Theorem. For all $\omega \in \Omega_{c}^{n-1}(X)$,

$$
\begin{equation*}
\int_{D} d \omega=\int_{\operatorname{Bd}(D)} \omega . \tag{6.168}
\end{equation*}
$$

Proof. Let $\rho_{i}, i=1,2 \ldots$, be a partition of unity as defined above. Replacing ω with $\sum \rho_{i} \omega$, it suffices to prove this for the two special cases below:

Case 1: Let $p \in \operatorname{Int} D$, and let $\phi: U \rightarrow V$ be an oriented parameterization of X at p with $V \subseteq \operatorname{Int} D$. If $\omega \in \Omega_{c}^{n-1}(V)$, then

$$
\begin{equation*}
\int_{D} d \omega=\int_{\mathbb{R}^{n}} \phi^{*} d \omega=\int_{\mathbb{R}^{n}} d \phi^{*} \omega=0 \tag{6.169}
\end{equation*}
$$

Case 2: Let $p \in \operatorname{Bd}(D)$, and let $\phi: U \rightarrow V$ be an oriented parameterization of D at p. Let $U^{b}=U \cap \operatorname{Bd}\left(\mathbb{H}^{n}\right)$, and let $V^{b}=V \cap \operatorname{Bd}(D)$. Define $\psi: \phi \mid U^{b}$, so $\psi: U^{b} \rightarrow V^{b}$ is an oriented parameterization of $\operatorname{Bd}(D)$ at p. If $\omega \in \Omega_{c}^{n-1}(V)$, then

$$
\begin{equation*}
\phi^{*} \omega=\sum f_{i}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n} \tag{6.170}
\end{equation*}
$$

What is $\psi^{*} \omega$? Let $\iota: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$ be the inclusion map mapping $\operatorname{Bd}\left(\mathbb{H}^{n}\right) \rightarrow \mathbb{R}^{n}$. The inclusion map ι maps $\left(x_{2}, \ldots, x_{n}\right) \rightarrow\left(0, x_{2}, \ldots, x_{n}\right)$. Then $\phi \circ \iota=\psi$, so

$$
\begin{align*}
\psi^{*} \omega & =\iota^{*} \phi^{*} \omega \\
& =\iota^{*}\left(\sum_{i=1}^{n} f_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}\right) . \tag{6.171}
\end{align*}
$$

But,

$$
\begin{equation*}
\iota^{*} d x_{1}=d \iota^{*} x_{1}=0, \quad \text { since } \iota^{*} x_{1}=0 \tag{6.172}
\end{equation*}
$$

So,

$$
\begin{align*}
\psi^{*} \omega & =\iota^{*} f_{1} d x_{2} \wedge \cdots \wedge d x_{n} \tag{6.173}\\
& =f_{1}\left(0, x_{2}, \ldots, x_{n}\right) d x_{2} \wedge \cdots \wedge d x_{n}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\int_{\operatorname{Bd}(D)} \omega=\int_{\mathbb{R}^{n-1}} \psi^{*} \omega=\int_{\mathbb{R}^{n-1}} f_{1}\left(0, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n} \tag{6.174}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\int_{D} d \omega=\int_{\mathbb{H}^{n}} \phi^{*} d \omega=\int_{\mathbb{H}^{n}} d \phi^{*} \omega . \tag{6.175}
\end{equation*}
$$

One should check that

$$
\begin{align*}
d \phi^{*} \omega & =d\left(\sum f_{i} d x_{1} \wedge \cdots \wedge \widehat{x x_{i}} \wedge \cdots \wedge d x_{n}\right) \\
& =\left(\sum(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}}\right) d x_{1} \wedge \cdots \wedge d x_{n} . \tag{6.176}
\end{align*}
$$

So, each summand

$$
\begin{equation*}
\int \frac{\partial f_{i}}{\partial x_{i}} d x_{1} \ldots d x_{n} \tag{6.177}
\end{equation*}
$$

can be integrated by parts, integrating first w.r.t. the i th variable. For $i>1$, this is the integral

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{\partial f_{i}}{\partial x_{i}} d x_{i} & =\left.f_{i}\left(x_{1}, \ldots, x_{n}\right)\right|_{\substack{x_{i}=\infty \\
x_{i}=-\infty}} ^{\substack{2}} \tag{6.178}\\
& =0
\end{align*}
$$

For $i=1$, this is the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right) d x_{1}=f_{1}\left(0, x_{2}, \ldots, x_{n}\right) \tag{6.179}
\end{equation*}
$$

Thus, the total integral of $\phi^{*} d \omega$ over \mathbb{H}^{n} is

$$
\begin{equation*}
\int f_{1}\left(0, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n} \tag{6.180}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\int_{D} d \omega=\int_{\operatorname{Bd}(D)} \omega \tag{6.181}
\end{equation*}
$$

We look at some applications of Stokes' Theorem.
Let D be a smooth domain. Assume that D is compact and oriented, and let $Y=\operatorname{Bd}(D)$. Let Z be an oriented n-manifold, and let $f: Y \rightarrow Z$ be a \mathcal{C}^{∞} map.
Theorem 6.47. If f extends to $a \mathcal{C}^{\infty}$ map $F: D \rightarrow Z$, then

$$
\begin{equation*}
\operatorname{deg}(f)=0 \tag{6.182}
\end{equation*}
$$

Corollary 9. The Brouwer fixed point theorem follows from the above theorem.

