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Lecture 38

We begin with a review from last time. 
Let X be an oriented manifold, and let D ⊆ X be a smooth domain. Then 

Bd (D) = Y is an oriented (n − 1)dimensional manifold. 
We defined integration over D as follows. For ω ∈ Ωn

c (X) we want to make sense 
of the integral 

ω. (6.161) 
D 

We look at some special cases: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p, where V ⊆ Int D. For ω ∈ Ωc
n(X), we define 

ω = ω = φ∗ω = φ∗ω. (6.162) 
D V U Rn 

This is just our old definition for 

ω. (6.163) 
V 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization of D 
at p. That is, φ maps U ∩ Hn onto V ∩ D. For ω ∈ Ωn

c (V ), we define 

ω = φ∗ω. (6.164) 
D Hn 

We showed last time that this definition does not depend on the choice of parameter
ization. 

General case: For each p ∈ Int D, let φ : Up → Vp be an oriented parameterization 
of X at p with Vp ⊆ Int D. For each p ∈ Bd (D), let φ : U Vp be and oriented p →
parameterization of D at p. Let 

U = Up, (6.165) 
p∈D 

where the set U = {Up : p ∈ D} be an an open cover of U . Let ρi, i = 1, 2, . . . , be a 
partition of unity subordinate to this cover. 

Definition 6.46. For ω ∈ Ωn
c (X) we define the integral 

ω = ρiω. (6.166) 
D i D 

Claim. The r.h.s. of this definition is welldefined. 
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Proof. Since the ρi’s are a partition of unity, there exists an N such that 

supp ω ∩ supp ρi = φ, (6.167) 

for all i > N . 
Hence, there are only a finite number of nonzero terms in the summand. More

over, each summand is an integral of one of the two types above (cases 1 and 2), and 
is therefore welldefined. 

Claim. The l.h.s. of the definition does not depend on the choice of the partition of 
unity ρi. 

Proof. We proved an analogous assertion about the definition of 
X 
ω a few lectures 

ago, and the proof of the present claim is exactly the same. 

6.11 Stokes’ Theorem 

Stokes’ Theorem. For all ω ∈ Ωn−1(X),c 

dω = ω. (6.168) 
D Bd (D) 

Proof. Let ρi, i = 1, 2 . . . , be a partition of unity as defined above. Replacing ω with 
ρiω, it suffices to prove this for the two special cases below: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p with V ⊆ Int D. If ω ∈ Ωn−1(V ), then c 

dω = φ∗dω = dφ∗ω = 0. (6.169) 
D Rn Rn 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization 
of D at p. Let U b = U ∩ Bd (Hn), and let V b = V ∩ Bd (D). Define ψ : φ U b, so |
ψ : U b → V b is an oriented parameterization of Bd (D) at p. If ω ∈ Ωn−1(V ), then c 

φ∗ω = fi(x1, . . . , xn)dx1 ∧ · · · ∧ � n. (6.170) dxi ∧ · · · ∧ dx

What is ψ∗ω? Let ι : Rn−1 → Rn be the inclusion map mapping Bd (Hn) → Rn . 
The inclusion map ι maps (x2, . . . , xn) → (0, x2, . . . , xn). Then φ ι = ψ, so ◦

ψ∗ω = ι∗φ∗ω 
n

= ι∗ 
� 

fidx1 ∧ · · · ∧ � n . 
(6.171) 

dxi ∧ · · · ∧ dx
i=1 

But, 
ι∗dx1 = dι∗x1 = 0, since ι∗x1 = 0. (6.172) 
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So, 

ψ∗ω = ι∗f1dx2 ∧ · · · ∧ dxn 
(6.173) 

= f1(0, x2, . . . , xn)dx2 ∧ · · · ∧ dxn. 
Thus, � � � 

ω = ψ∗ω = f1(0, x2, . . . , xn)dx2 . . . dxn. (6.174) 
Bd (D) Rn−1 Rn−1 

On the other hand, � � � 
dω = φ∗dω = dφ∗ω. (6.175) 

D Hn Hn 

One should check that �� � 
dφ∗ω = d fidx1 ∧ · · · ∧ � nxxi ∧ · · · ∧ dx

= 

�� 
(−1)i−1 ∂fi 

� 

n. 
(6.176) 

∂xi 
dx1 ∧ · · · ∧ dx

So, each summand 
∂fi 

dx1 . . . dxn (6.177) 
∂xi 

can be integrated by parts, integrating first w.r.t. the ith variable. For i > 1, this is 
the integral 

∞ ∂fi xi=∞ 

∂xi 
dxi = fi(x1, . . . , xn)|xi=−∞ 

(6.178) −∞ 

= 0. 

For i = 1, this is the integral 
∞ ∂f1 

(x1, . . . , xn)dx1 = f1(0, x2, . . . , xn). (6.179) 
∂x1−∞ 

Thus, the total integral of φ∗dω over Hn is 

f1(0, x2, . . . , xn)dx2 . . . dxn. (6.180) 

We conclude that � � 
dω = ω. (6.181) 

D Bd (D) 

We look at some applications of Stokes’ Theorem. 
Let D be a smooth domain. Assume that D is compact and oriented, and let 

Y = Bd (D). Let Z be an oriented nmanifold, and let f : Y → Z be a C∞ map. 

Theorem 6.47. If f extends to a C∞ map F : D Z, then → 

deg(f) = 0. (6.182) 

Corollary 9. The Brouwer fixed point theorem follows from the above theorem. 
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