Lecture 36

The first problem on today's homework will be to prove the inverse function theorem for manifolds. Here we state the theorem and provide a sketch of the proof.

Let X, Y be *n*-dimensional manifolds, and let $f : X \to Y$ be a \mathcal{C}^{∞} map with $f(p) = p_1$.

Theorem 6.39. If $df_p : T_pX \to T_{p_1}Y$ is bijective, then f maps a neighborhood V of p diffeomorphically onto a neighborhood V_1 of p_1 .

Sketch of proof: Let $\phi : U \to V$ be a parameterization of X at p, with $\phi(q) = p$. Similarly, let $\phi_1 : U_1 \to V_1$ be a parameterization of Y at p_1 , with $\phi_1(q_1) = p_1$.

Show that we can assume that $f: V \to V_1$ (Hint: if not, replace V by $V \cap f^{-1}(V_1)$). Show that we have a diagram

$$V \xrightarrow{f} V_{1}$$

$$\phi \uparrow \qquad \phi_{1} \uparrow \qquad (6.114)$$

$$U \xrightarrow{g} U_{1},$$

which defines g,

$$g = \phi_1^{-1} \circ f \circ \phi, \tag{6.115}$$

$$g(q) = q_1. (6.116)$$

So,

$$(dg)_q = (d\phi_1)_{q_1}^{-1} \circ df_p \circ (d\phi)_q.$$
(6.117)

Note that all three of the linear maps on the r.h.s. are bijective, so $(dg)_q$ is a bijection. Use the Inverse Function Theorem for open sets in \mathbb{R}^n .

This ends our explanation of the first homework problem.

Last time we showed the following. Let X, Y be *n*-dimensional manifolds, and let $f: X \to Y$ be a proper \mathcal{C}^{∞} map. We can define a topological invariant deg(f) such that for every $\omega \in \Omega_c^n(Y)$,

$$\int_X f^* \omega = \deg(f) \int_Y \omega.$$
(6.118)

There is a recipe for calculating the degree, which we state in the following theorem. We lead into the theorem with the following lemma.

First, remember that we defined the set C_f of critical points of f by

$$p \in C_f \iff df_p : T_p X \to T_q Y \text{ is not surjective},$$
 (6.119)

where q = f(p).

Lemma 6.40. Suppose that $q \in Y - f(C_f)$. Then $f^{-1}(q)$ is a finite set.

Proof. Take $p \in f^{-1}(q)$. Since $p \notin C_f$, the map df_p is bijective. The Inverse Function Theorem tells us that f maps a neighborhood U_p of p diffeomorphically onto an open neighborhood of q. So, $U_p \cap f^{-1}(q) = p$.

Next, note that $\{U_p : p \in f^{-1}(q)\}$ is an open covering of $f^{-1}(q)$. Since f is proper, $f^{-1}(q)$ is compact, so there exists a finite subcover U_{p_1}, \ldots, U_{p_N} . Therefore, $f^{-1}(q) = \{p_1, \ldots, p_N\}$.

The following theorem gives a recipe for computing the degree.

Theorem 6.41.

$$\deg(f) = \sum_{i=1}^{N} \sigma_{p_i},\tag{6.120}$$

where

$$\sigma_{p_i} = \begin{cases} +1 & \text{if } df_{p_i} : T_{p_i} X \to T_q Y \text{ is orientation preserving,} \\ -1 & \text{if } df_{p_i} : T_{p_i} X \to T_q Y \text{ is orientation reversing,} \end{cases}$$
(6.121)

Proof. The proof is basically the same as the proof in Euclidean space. \Box

We say that $q \in Y$ is a regular value of f if $q \notin f(C_f)$. Do regular values exist? We showed that in the Euclidean case, the set of non-regular values is of measure zero (Sard's Theorem). The following theorem is the analogous theorem for manifolds.

Theorem 6.42. If $q_0 \in Y$ and W is a neighborhood of q_0 in Y, then $W - f(C_f)$ is non-empty. That is, every neighborhood of q_0 contains a regular value (this is known as the Volume Theorem).

Proof. We reduce to Sard's Theorem.

The set $f^{-1}(q_0)$ is a compact set, so we can cover $f^{-1}(q_0)$ by open sets $V_i \subset X$, $i = 1, \ldots, N$, such that each V_i is diffeomorphic to an open set in \mathbb{R}^n .

Let W be a neighborhood of q_0 in Y. We can assume the following:

- 1. W is diffeomorphic to an open set in \mathbb{R}^n ,
- 2. $f^{-1}(W) \subset \bigcup V_i$ (which is Theorem 4.3 in the Supp. Notes),
- 3. $f(V_i) \subseteq W$ (for, if not, we can replace V_i with $V_i \cap f^{-1}(W)$).

Let U and the sets U_i , i = 1, ..., N, be open sets in \mathbb{R}^n . Let $\phi : U \to W$ and the maps $\phi_i : U_i \to V_i$ be diffeomorphisms. We have the following diagram:

$$V_{i} \xrightarrow{f} W$$

$$\phi_{i} \cong \uparrow \qquad \phi_{i} \cong \uparrow \qquad (6.122)$$

$$U_{i} \xrightarrow{g_{i}} U_{i}$$

which define the maps g_i ,

$$g_i = \phi^{-1} \circ f \circ \phi_i. \tag{6.123}$$

By the chain rule, $x \in C_{g_i} \implies \phi_i(x) \in C_f$, so

$$\phi_i(C_{g_i} = C_f \cap V_i. \tag{6.124}$$

So,

$$\phi(g_i(C_{g_i})) = f(C_f \cap V_i).$$
(6.125)

Then,

$$f(C_f) \cap W = \bigcup_i \phi(g_i(C_{g_i})).$$
(6.126)

Sard's Theorem tells us that $g_i(C_{g_i})$ is a set of measure zero in U, so

$$U - \bigcup g_i(C_{g_i})$$
 is non-empty, so (6.127)

$$W - f(C_f)$$
 is also non-empty. (6.128)

In fact, this set is not only non-empty, but is a very, very "full" set. \Box

Let $f_0, f_1 : X \to Y$ be proper \mathcal{C}^{∞} maps. Suppose there exists a proper \mathcal{C}^{∞} map $F : X \times [0, 1] \to Y$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$. Then

$$\deg(f_0) = \deg(f_1). \tag{6.129}$$

In other words, the degree is a homotopy. The proof of this is essential the same as before.

6.9 Hopf Theorem

The Hopf Theorem is a nice application of the homotopy invariance of the degree.

Define the n-sphere

$$S^{n} = \{ v \in \mathbb{R}^{n+1} : ||v|| = 1 \}.$$
(6.130)

Hopf Theorem. Let n be even. Let $f : S^n \to \mathbb{R}^{n+1}$ be a \mathcal{C}^{∞} map. Then, for some $v \in S^n$,

$$f(v) = \lambda v, \tag{6.131}$$

for some scalar $\lambda \in \mathbb{R}$.

Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v). Consider $w - \langle v, w \rangle v \equiv w - w_1$. It follows that $w - w_1 \neq 0$.

Define a new map $\tilde{f}: S^n \to S^n$ by

$$\tilde{f}(v) = \frac{f(v) - \langle v, f(x) \rangle}{||f(v) - \langle v, f(x) \rangle||}$$
(6.132)

Note that $(w - w_1) \perp v$, so $\tilde{f}(v) \perp v$.

Define a family of functions

$$f_t: S^n \to S^n, \tag{6.133}$$

$$f_t(v) = (\cos t)v + (\sin t)\tilde{w}, \qquad (6.134)$$

where $\tilde{w} = \tilde{f}(v)$ has the properties $||\tilde{w}|| = 1$ and $\tilde{w} \perp v$. We compute the degree of f_t . When t = 0, $f_t = \text{id}$, so

$$\deg(f_t) = \deg(f_0) = 1. \tag{6.135}$$

When $t = \pi$, $f_t(v) = -v$. But, if *n* is even, a map from $S^n \to S^n$ mapping $v \to (-v)$ has degree -1. We have arrived at a contradiction.