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Lecture 36

The first problem on today’s homework will be to prove the inverse function 

theorem for manifolds. Here we state the theorem and provide a sketch of the proof. 
Let X, Y be ndimensional manifolds, and let f : X → Y be a C ∞ map with 

f(p) = p1. 

Theorem 6.39. If dfp : TpX → Tp1Y is bijective, then f maps a neighborhood V of 
p diffeomorphically onto a neighborhood V1 of p1. 

Sketch of proof: Let φ : U → V be a parameterization of X at p, with φ(q) = p. 
Similarly, let φ1 : U1 → V1 be a parameterization of Y at p1, with φ1(q1) = p1. 

Show that we can assume that f : V → V1 (Hint: if not, replace V by V ∩ f−1(V1)). 
Show that we have a diagram 

�⏐⏐ 

f 
V V1−−−→ �⏐⏐
 (6.114) φ φ1 

g−−−→ U U1, 

which defines g, 

g = φ−1 
1 ◦ f ◦ φ, (6.115) 

g(q) = q1. (6.116) 

So, 
(dg)q = (dφ1)

−1 
q1 
◦ dfp ◦ (dφ)q. (6.117) 

Note that all three of the linear maps on the r.h.s. are bijective, so (dg)q is a bijection. 
Use the Inverse Function Theorem for open sets in Rn . 

This ends our explanation of the first homework problem.

Last time we showed the following. Let X, Y be ndimensional manifolds, and let


f : X → Y be a proper C ∞ map. We can define a topological invariant deg(f) such 
that for every ω ∈ Ωn

c (Y ), 

f ∗ω = deg(f) ω. (6.118) 
X Y 

There is a recipe for calculating the degree, which we state in the following theo
rem. We lead into the theorem with the following lemma. 

First, remember that we defined the set Cf of critical points of f by 

⇐ ⇒ dfp : TpX → TqY is not surjective, (6.119) p ∈ Cf 

where q = f(p). 
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Lemma 6.40. Suppose that q ∈ Y − f(Cf ). Then f−1(q) is a finite set. 

Proof. Take p ∈ f−1(q). Since p / Cf , the map dfp is bijective. The Inverse Function ∈
Theorem tells us that f maps a neighborhood Up of p diffeomorphically onto an open 
neighborhood of q. So, Up ∩ f−1(q) = p. 

Next, note that { Up : p ∈ f−1(q)} is an open covering of f−1(q). Since f is 
proper, f−1(q) is compact, so there exists a finite subcover Up1 , . . . , UpN 

. Therefore, 
f−1(q) = { p1, . . . , pN} . 

The following theorem gives a recipe for computing the degree. 

Theorem 6.41. 
N

deg(f) = σpi
,	 (6.120) 

i=1 

where 

σpi 
= 

+1 if dfpi 
: Tpi

X → TqY is orientation preserving, 
(6.121) 

if dfpi 
: Tpi

X → TqY is orientation reversing,− 1 

Proof. The proof is basically the same as the proof in Euclidean space. 

We say that q ∈ Y is a regular value of f if q / f(Cf ). Do regular values exist? ∈
We showed that in the Euclidean case, the set of nonregular values is of measure zero 
(Sard’s Theorem). The following theorem is the analogous theorem for manifolds. 

Theorem 6.42. If q0 ∈ Y and W is a neighborhood of q0 in Y , then W − f(Cf ) is 
nonempty. That is, every neighborhood of q0 contains a regular value (this is known 
as the Volume Theorem). 

Proof. We reduce to Sard’s Theorem. 
The set f−1(q0) is a compact set, so we can cover f−1(q0) by open sets Vi ⊂ X, i = 

1, . . . , N , such that each Vi is diffeomorphic to an open set in Rn . 
Let W be a neighborhood of q0 in Y . We can assume the following: 

1. W is diffeomorphic to an open set in Rn , �

2. f−1(W ) ⊂ Vi (which is Theorem 4.3 in the Supp. Notes), 

3.	 f(Vi) ⊆ W (for, if not, we can replace Vi with Vi ∩ f−1(W )). 

Let U and the sets Ui, i = 1, . . . , N , be open sets in Rn . Let φ : U W and the → 
maps φi : Ui → Vi be diffeomorphisms. We have the following diagram: 

f −−−→
 W
�⏐⏐
 (6.122)

�⏐⏐ 

Vi 

φi,∼= φ,∼= 

gi 
U, Ui −−−→ 
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which define the maps gi, 
gi = φ−1 ◦ f ◦ φi. (6.123) 

By the chain rule, x ∈ Cgi 
= ⇒ φi(x) ∈ Cf , so 

φi(Cgi 
= Cf ∩ Vi. (6.124) 

So, 
φ(gi(Cgi

)) = f(Cf ∩ Vi). (6.125) 

Then, 
 
f(Cf ) ∩ W = φ(gi(Cgi

)). (6.126) 
i 

Sard’s Theorem tells us that gi(Cgi
) is a set of measure zero in U , so 
 
gi(Cgi

) is nonempty, so (6.127) U − 

W − f(Cf ) is also nonempty. (6.128) 

In fact, this set is not only nonempty, but is a very, very “full” set. 

Let f0, f1 : X → Y be proper C∞ maps. Suppose there exists a proper C∞ map 
F : X × [0, 1] → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x). Then 

deg(f0) = deg(f1). (6.129) 

In other words, the degree is a homotopy. The proof of this is essential the same as 
before. 

6.9 Hopf Theorem 

The Hopf Theorem is a nice application of the homotopy invariance of the degree. 
Define the nsphere


{v ∈ Rn+1
Sn = 1}. (6.130) : ||v|| = 

Hopf Theorem. Let n be even. Let f : Sn → Rn+1 be a C∞ map. Then, for some 
v ∈ Sn , 

f(v) = λv, (6.131) 

for some scalar λ ∈ R. 

Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v). 
Consider w − �v, w�v ≡ w − w1. It follows that w − w1 = 0. 

Define a new map f̃ : Sn Sn by → 

f̃(v) = 
f(v)− �v, f(x)� 

(6.132) 
||f(v)− �v, f(x)�|| 
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Note that (w − w1) ⊥ v, so f̃(v) ⊥ v. 
Define a family of functions 

ft : S
n Sn , (6.133) → 

ft(v) = (cos t)v + (sin t)w̃, (6.134) 

˜ w ⊥ v.where w = f̃(v) has the properties || ̃ 1 and ˜w|| = 
We compute the degree of ft. When t = 0, ft = id, so 

deg(ft) = deg(f0) = 1. (6.135) 

When t = π, ft(v) = −v. But, if n is even, a map from Sn → Sn mapping v → (−v) 
has degree −1. We have arrived at a contradiction. 
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