Lecture 36

The first problem on today's homework will be to prove the inverse function theorem for manifolds. Here we state the theorem and provide a sketch of the proof.

Let X, Y be n-dimensional manifolds, and let $f: X \rightarrow Y$ be a \mathcal{C}^{∞} map with $f(p)=p_{1}$.

Theorem 6.39. If $d f_{p}: T_{p} X \rightarrow T_{p_{1}} Y$ is bijective, then f maps a neighborhood V of p diffeomorphically onto a neighborhood V_{1} of p_{1}.

Sketch of proof: Let $\phi: U \rightarrow V$ be a parameterization of X at p, with $\phi(q)=p$. Similarly, let $\phi_{1}: U_{1} \rightarrow V_{1}$ be a parameterization of Y at p_{1}, with $\phi_{1}\left(q_{1}\right)=p_{1}$.

Show that we can assume that $f: V \rightarrow V_{1}$ (Hint: if not, replace V by $V \cap f^{-1}\left(V_{1}\right)$).
Show that we have a diagram

$$
\begin{array}{cc}
V \xrightarrow{f} V_{1} \\
\phi \uparrow & \tag{6.114}\\
& \phi_{1} \uparrow \\
U \xrightarrow{g} & U_{1},
\end{array}
$$

which defines g,

$$
\begin{gather*}
g=\phi_{1}^{-1} \circ f \circ \phi, \tag{6.115}\\
g(q)=q_{1} . \tag{6.116}
\end{gather*}
$$

So,

$$
\begin{equation*}
(d g)_{q}=\left(d \phi_{1}\right)_{q_{1}}^{-1} \circ d f_{p} \circ(d \phi)_{q} . \tag{6.117}
\end{equation*}
$$

Note that all three of the linear maps on the r.h.s. are bijective, so $(d g)_{q}$ is a bijection. Use the Inverse Function Theorem for open sets in \mathbb{R}^{n}.

This ends our explanation of the first homework problem.
Last time we showed the following. Let X, Y be n-dimensional manifolds, and let $f: X \rightarrow Y$ be a proper \mathcal{C}^{∞} map. We can define a topological invariant $\operatorname{deg}(f)$ such that for every $\omega \in \Omega_{c}^{n}(Y)$,

$$
\begin{equation*}
\int_{X} f^{*} \omega=\operatorname{deg}(f) \int_{Y} \omega \tag{6.118}
\end{equation*}
$$

There is a recipe for calculating the degree, which we state in the following theorem. We lead into the theorem with the following lemma.

First, remember that we defined the set C_{f} of critical points of f by

$$
\begin{equation*}
p \in C_{f} \Longleftrightarrow d f_{p}: T_{p} X \rightarrow T_{q} Y \text { is not surjective, } \tag{6.119}
\end{equation*}
$$

where $q=f(p)$.

Lemma 6.40. Suppose that $q \in Y-f\left(C_{f}\right)$. Then $f^{-1}(q)$ is a finite set.
Proof. Take $p \in f^{-1}(q)$. Since $p \notin C_{f}$, the map $d f_{p}$ is bijective. The Inverse Function Theorem tells us that f maps a neighborhood U_{p} of p diffeomorphically onto an open neighborhood of q. So, $U_{p} \cap f^{-1}(q)=p$.

Next, note that $\left\{U_{p}: p \in f^{-1}(q)\right\}$ is an open covering of $f^{-1}(q)$. Since f is proper, $f^{-1}(q)$ is compact, so there exists a finite subcover $U_{p_{1}}, \ldots, U_{p_{N}}$. Therefore, $f^{-1}(q)=\left\{p_{1}, \ldots, p_{N}\right\}$.

The following theorem gives a recipe for computing the degree.
Theorem 6.41.

$$
\begin{equation*}
\operatorname{deg}(f)=\sum_{i=1}^{N} \sigma_{p_{i}} \tag{6.120}
\end{equation*}
$$

where

$$
\sigma_{p_{i}}= \begin{cases}+1 & \text { if } d f_{p_{i}}: T_{p_{i}} X \rightarrow T_{q} Y \text { is orientation preserving }, \tag{6.121}\\ -1 & \text { if } d f_{p_{i}}: T_{p_{i}} X \rightarrow T_{q} Y \text { is orientation reversing }\end{cases}
$$

Proof. The proof is basically the same as the proof in Euclidean space.
We say that $q \in Y$ is a regular value of f if $q \notin f\left(C_{f}\right)$. Do regular values exist? We showed that in the Euclidean case, the set of non-regular values is of measure zero (Sard's Theorem). The following theorem is the analogous theorem for manifolds.

Theorem 6.42. If $q_{0} \in Y$ and W is a neighborhood of q_{0} in Y, then $W-f\left(C_{f}\right)$ is non-empty. That is, every neighborhood of q_{0} contains a regular value (this is known as the Volume Theorem).

Proof. We reduce to Sard's Theorem.
The set $f^{-1}\left(q_{0}\right)$ is a compact set, so we can cover $f^{-1}\left(q_{0}\right)$ by open sets $V_{i} \subset X, i=$ $1, \ldots, N$, such that each V_{i} is diffeomorphic to an open set in \mathbb{R}^{n}.

Let W be a neighborhood of q_{0} in Y. We can assume the following:

1. W is diffeomorphic to an open set in \mathbb{R}^{n},
2. $f^{-1}(W) \subset \bigcup V_{i}$ (which is Theorem 4.3 in the Supp. Notes),
3. $f\left(V_{i}\right) \subseteq W$ (for, if not, we can replace V_{i} with $V_{i} \cap f^{-1}(W)$).

Let U and the sets $U_{i}, i=1, \ldots, N$, be open sets in \mathbb{R}^{n}. Let $\phi: U \rightarrow W$ and the maps $\phi_{i}: U_{i} \rightarrow V_{i}$ be diffeomorphisms. We have the following diagram:

$$
\begin{align*}
& V_{i} \xrightarrow{f} W \\
& \phi_{i}, \cong \uparrow \quad \phi, \cong \uparrow \tag{6.122}\\
& U_{i} \xrightarrow{g_{i}} U,
\end{align*}
$$

which define the maps g_{i},

$$
\begin{equation*}
g_{i}=\phi^{-1} \circ f \circ \phi_{i} . \tag{6.123}
\end{equation*}
$$

By the chain rule, $x \in C_{g_{i}} \Longrightarrow \phi_{i}(x) \in C_{f}$, so

$$
\begin{equation*}
\phi_{i}\left(C_{g_{i}}=C_{f} \cap V_{i} .\right. \tag{6.124}
\end{equation*}
$$

So,

$$
\begin{equation*}
\phi\left(g_{i}\left(C_{g_{i}}\right)\right)=f\left(C_{f} \cap V_{i}\right) . \tag{6.125}
\end{equation*}
$$

Then,

$$
\begin{equation*}
f\left(C_{f}\right) \cap W=\bigcup_{i} \phi\left(g_{i}\left(C_{g_{i}}\right)\right) . \tag{6.126}
\end{equation*}
$$

Sard's Theorem tells us that $g_{i}\left(C_{g_{i}}\right)$ is a set of measure zero in U, so

$$
\begin{array}{r}
U-\bigcup g_{i}\left(C_{g_{i}}\right) \text { is non-empty, so } \\
W-f\left(C_{f}\right) \text { is also non-empty. } \tag{6.128}
\end{array}
$$

In fact, this set is not only non-empty, but is a very, very "full" set.
Let $f_{0}, f_{1}: X \rightarrow Y$ be proper \mathcal{C}^{∞} maps. Suppose there exists a proper \mathcal{C}^{∞} map $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$. Then

$$
\begin{equation*}
\operatorname{deg}\left(f_{0}\right)=\operatorname{deg}\left(f_{1}\right) \tag{6.129}
\end{equation*}
$$

In other words, the degree is a homotopy. The proof of this is essential the same as before.

6.9 Hopf Theorem

The Hopf Theorem is a nice application of the homotopy invariance of the degree.
Define the n-sphere

$$
\begin{equation*}
S^{n}=\left\{v \in \mathbb{R}^{n+1}:\|v\|=1\right\} . \tag{6.130}
\end{equation*}
$$

Hopf Theorem. Let n be even. Let $f: S^{n} \rightarrow \mathbb{R}^{n+1}$ be a \mathcal{C}^{∞} map. Then, for some $v \in S^{n}$,

$$
\begin{equation*}
f(v)=\lambda v, \tag{6.131}
\end{equation*}
$$

for some scalar $\lambda \in \mathbb{R}$.
Proof. We prove the contrapositive. Assume that no such v exists, and take $w=f(v)$. Consider $w-\langle v, w\rangle v \equiv w-w_{1}$. It follows that $w-w_{1} \neq 0$.

Define a new map $\tilde{f}: S^{n} \rightarrow S^{n}$ by

$$
\begin{equation*}
\tilde{f}(v)=\frac{f(v)-\langle v, f(x)\rangle}{\|f(v)-\langle v, f(x)\rangle\|} \tag{6.132}
\end{equation*}
$$

Note that $\left(w-w_{1}\right) \perp v$, so $\tilde{f}(v) \perp v$.
Define a family of functions

$$
\begin{gather*}
f_{t}: S^{n} \rightarrow S^{n} \tag{6.133}\\
f_{t}(v)=(\cos t) v+(\sin t) \tilde{w} \tag{6.134}
\end{gather*}
$$

where $\tilde{w}=\tilde{f}(v)$ has the properties $\|\tilde{w}\|=1$ and $\tilde{w} \perp v$.
We compute the degree of f_{t}. When $t=0, f_{t}=\mathrm{id}$, so

$$
\begin{equation*}
\operatorname{deg}\left(f_{t}\right)=\operatorname{deg}\left(f_{0}\right)=1 \tag{6.135}
\end{equation*}
$$

When $t=\pi, f_{t}(v)=-v$. But, if n is even, a map from $S^{n} \rightarrow S^{n}$ mapping $v \rightarrow(-v)$ has degree -1 . We have arrived at a contradiction.

