Lecture 32

6.4 Tangent Spaces of Manifolds

We generalize our earlier discussion of tangent spaces to tangent spaces of manifolds. First we review our earlier treatment of tangent spaces.

Let $p \in \mathbb{R}^n$. We define

$$T_p \mathbb{R}^n = \{ (p, v) : v \in \mathbb{R}^n \}.$$

$$(6.31)$$

Of course, we associate $T_p \mathbb{R}^n \cong \mathbb{R}^n$ by the map $(p, v) \to v$.

If U is open in \mathbb{R}^n , V is open in \mathbb{R}^k , and $f: (U,p) \to (V,q)$ (meaning that fmaps $U \to V$ and $p \to p_1$) is a \mathcal{C}^{∞} map, then we have the map $df_p: T_p\mathbb{R}^n \to T_q\mathbb{R}^k$. Via the identifications $T_p\mathbb{R}^n \cong \mathbb{R}^n$ and $T_p\mathbb{R}^k \cong \mathbb{R}^k$, the map df_p is just the map $Df(p): \mathbb{R}^n \to \mathbb{R}^k$. Because these two maps can be identified, we can use the chain rule for \mathcal{C}^{∞} maps. Specifically, if $f: (U,p) \to (V,q)$ and $g: (V,q) \to (\mathbb{R}^\ell, w)$, then

$$d(g \circ f)_p = (dg)_q \circ (df)_p, \tag{6.32}$$

because $(Dg)(q)(Df(p)) = (Dg \circ f)(p)$.

You might be wondering: Why did we make everything more complicated by using df instead of Df? The answer is because we are going to generalize from Euclidean space to manifolds.

Remember, a set $X \subseteq \mathbb{R}^N$ is an *n*-dimensional manifold if for every $p \in X$, there exists a neighborhood V of p in \mathbb{R}^N , an open set U in \mathbb{R}^n , and a diffeomorphism $\phi: U \to V \cap X$. The map $\phi: U \to V \cap X$ is called a parameterization of X at p.

Let us think of ϕ as a map $\phi: U \to \mathbb{R}^N$ with $\operatorname{Im} \phi \subseteq X$.

Claim. Let $\phi^{-1}(p) = q$. Then the map $(d\phi)_q : T_q \mathbb{R}^n \to T_p \mathbb{R}^N$ is one-to-one.

Reminder of proof: The map $\phi^{-1} : V \cap X \to U$ is a \mathcal{C}^{∞} map. So, shrinking V if necessary, we can assume that this map extends to a map $\psi : V \to U$ such that $\psi = \phi^{-1}$ on $X \cap V$. Then note that for any $u \in U$, we have $\psi(\phi(u)) = \phi^{-1}(\phi(u)) = u$. So, $\psi \circ \phi = \mathrm{id}_U = \mathrm{the identity}$ on U.

Using the chain rule, and letting $\phi(q) = p$, we get

$$d(\psi \circ \phi)_q = (d\psi)_o \circ (d\phi)_q$$

= $(d(\mathrm{id}_U))_q.$ (6.33)

So, $(d\phi)_q$ is injective.

Today we define for any $p \in X$ the tangent space T_pX , which will be a vector subspace $T_pX \subseteq T_p\mathbb{R}^N$. The tangent space will be like in elementary calculus, that is, a space tangent to some surface.

Let $\phi : U \to V \cap X$ be a parameterization of X, and let $\phi(q) = p$. The above claim tells us that $(d\phi)_q : T_q \mathbb{R}^n \to T_p \mathbb{R}^N$ is injective.

Definition 6.10. We define the *tangent space* of a manifold X to be

$$T_p X = \operatorname{Im} \left(d\phi \right)_q. \tag{6.34}$$

Because $(d\phi)_q$ is injective, the space T_pX is *n*-dimensional.

We would like to show that the space T_pX does not depend on the choice of parameterization ϕ . To do so, we will make use of an equivalent definition for the tangent space T_pX .

Last time we showed that given $p \in X \subseteq \mathbb{R}^N$, and k = N - n, there exists a neighborhood V of p in \mathbb{R}^N and a \mathcal{C}^{∞} map $f: V \to \mathbb{R}^k$ mapping f(p) = 0 such that $X \cap V = f^{-1}(0)$. Note that $f^{-1}(0) \cap C_f = \phi$ (where here ϕ is the empty set).

We motivate the second definition of the tangent space. Since $p \in f^{-1}(0)$, the point $p \notin C_f$. So, the map $df_p : T_p \mathbb{R}^N \to T_0 \mathbb{R}^k$ is surjective. So, the kernel of df_p in $T_p \mathbb{R}^N$ is of dimension N - k = n.

Definition 6.11. An alternate definition for the *tangent space* of a manifold is

$$T_p X = \ker df_p. \tag{6.35}$$

Claim. These two definitions for the tangent space T_pX are equivalent.

Proof. Let $\phi : U \to V \cap X$ be a parameterization of X at p with $\phi(p) = q$. The function $f: V \to \mathbb{R}^k$ has the property that $f^{-1}(0) = X \cap V$. So, $f \circ \phi \equiv 0$. Applying the chain rule,

$$(df_p) \circ (d\phi_q) = d(0) = 0.$$
 (6.36)

So, Im $d\phi_q = \ker df_p$.

We can now explain why the tangent space T_pX is independent of the chosen parameterization. We have two definitions for the tangent space. The first does not depend on the choice of ϕ , and the second does not depend on choice of f. Therefore, the tangent space depends on neither.

Lemma 6.12. Let W be an open subset of \mathbb{R}^{ℓ} , and let $g: W \to \mathbb{R}^n$ be a \mathcal{C}^{∞} map. Suppose that $g(W) \subseteq X$ and that g(w) = p, where $w \in W$. Then $(dg)_W \subseteq T_pX$.

Proof Hint: We leave the proof as an exercise. As above, we have a map $f: V \to \mathbb{R}^k$ such that $X \cap V = f^{-1}(0)$ and $T_p X = \ker df_p$. Let $W_1 = g^{-1}(V)$, and consider the map $f \circ g: W_1 \to \mathbb{R}^k$. As before, $f \circ g = 0$, so $df_p \circ dg_w = 0$.

Suppose that $X \subseteq \mathbb{R}^N$ is an *n*-dimensional manifold and $Y \subseteq \mathbb{R}^\ell$ is an *m*-dimensional manifold. Let $f: X \to Y$ be a \mathcal{C}^∞ map, and let f(p) = q. We want to define a linear map

$$df_p: T_p X \to T_q Y. \tag{6.37}$$

Let v be a neighbor hood of p in \mathbb{R}^N , and let $g: V \to \mathbb{R}^\ell$ be a map such that g = f on $V \cap X$. By definition $T_p X \subseteq T_p \mathbb{R}^N$, so we have

$$dg_p: T_p \mathbb{R}^N \to T_q \mathbb{R}^k. \tag{6.38}$$

We define the map df_p to be the restriction of dg_p to the tangent space T_pX .

Definition 6.13.

$$df_p = dg_p | T_p X. ag{6.39}$$

There are two questions about this definition that should have us worried:

- 1. Is Im $dg_p(T_pX)$ a subset of T_qY ?
- 2. Does this definition depend on the choice of g?

We address these two questions here:

1. Is Im $dg_p(T_pX)$ a subset of T_qY ?

Let U be an open subset of \mathbb{R}^N , let q = f(p), and let $\phi : U \to X \cap V$ be a parameterization of X at p. As before, let us think of ϕ as a map $\phi : U \to \mathbb{R}^N$ with $\phi(U) \subseteq X$.

By definition, $T_p X = \text{Im} (d\phi)_r$, where $\phi(r) = p$. So, given $v \in T_p X$, one can always find $w \in T_r \mathbb{R}^n$ with $v = (d\phi)_r w$.

Now, is it true that $(dg)_p(v) \in T_q Y$? We have

$$(dg)_p v = (dg)_p (d\phi)_r (w)$$

= $d(g \circ \phi)_r (w),$ (6.40)

and the map $(g \circ \phi)$ is of the form $g \circ \phi : U \to Y$, so

$$d(g \circ \phi)_r(w) \in T_q Y. \tag{6.41}$$

2. Does the definition depend on the choice of g?

Consider two such maps $g_1, g_2 : V \to \mathbb{R}^{\ell}$. The satisfy $g_1 = g_2 = f$ on $X \cap V$. Then, with v, w as above,

$$(dg_1)_p(v) = d(g_1 \circ \phi)_r(w) \tag{6.42}$$

$$(dg_2)_p(v) = d(g_2 \circ \phi)_r(w).$$
 (6.43)

Since $g_1 = g_2$ on $X \cap V$, we have

$$g_1 \circ \phi = g_2 \circ \phi = f \circ \phi. \tag{6.44}$$

Hence,

$$d(g_1 \circ \phi)_r(w) = d(g_2 \circ \phi)_r(w).$$
 (6.45)

As an exercise, show that the chain rule also generalizes to manifolds as follows: Suppose that X_1, X_2, X_3 are manifolds with $X_i \subseteq \mathbb{R}^{N_i}$, and let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be \mathcal{C}^{∞} maps. Let f(p) = q and g(q) = r.

Show the following claim.

Claim.

$$d(g \circ f)_p = (dg_q) \circ (df)_q. \tag{6.46}$$

Proof Hint: Let V_1 be a neighborhood of p in \mathbb{R}^{N_1} , and let V_2 be a neighborhood of q in \mathbb{R}^{N_2} . Let $\tilde{f}: V_1 \to V_2$ be an extension of f to V_1 , and let $\tilde{g}: V_2 \to \mathbb{R}^{N_3}$ be an extension of g to V_2 .

The chain rule for f, g follows from the chain rule for \tilde{f}, \tilde{g} .