
Lecture 30


6 Manifolds 

6.1	 Canonical Submersion and Canonical Immersion Theo
rems 

As part of today’s homework, you are to prove the canonical submersion and im
mersion theorems for linear maps. We begin today’s lecture by stating these two 
theorems. 

Let A : Rn Rm be a linear map, and let [aij] be its associated matrix. We have →
the transpose map At : Rm Rn with the associated matrix [aji].→ 

Definition 6.1. Let k < n. Define the canonical submersion map π and the canonical 
immersion map ι as follows: 

Canonical submersion: 

π : Rn → Rk , (x1, . . . , xn) → (x1, . . . , xk).	 (6.1) 

Canonical immersion: 

ι : Rk → Rn , (x1, . . . , xk) → (x1, . . . , xk, 0, . . . , 0). (6.2) 

Canonical Submersion Thoerem. Let A : Rn Rk be a linear map, and suppose →
that A	 is onto. Then there exists a bijective linear map B : Rn Rn such that→
A B = π.◦ 

Proof Hint: Show that there exists a basis v1, . . . , vn of Rn such that Avi = ei, i = 
1, . . . , k, (the standard basis of Rk) and Avi = 0 for all i > k. Then let B : Rn Rn →
be the linear map Bei = vi, i = 1, . . . , n, where ei, . . . , en is the standard basis of 
Rn . 

Canonical Immersion Thoerem. As before, let k < n. Let A : Rk Rn be a 
onetoone linear map. Then there exists a bijective linear map B : Rn 

→ 
Rn such→

that B A = ι.◦ 

tBtProof Hint: Note that B A = ι A = π. Use the Canonical Submersion ◦ ⇐⇒ 
Theorem. 

Now we prove nonlinear versions of these two theorems.

Let U be an open set in Rn, and let f : U → Rk be a C ∞ map. Let p ∈ U .


Definition 6.2. The map f is a submersion at p if Df(p) : Rn Rk is onto. → 
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Canonical Submersion Thoerem. Assume that f is a submersion at p and that 
f(p) = 0. Then there exists a neighborhood U0 of p in U , a neighborhood V of 0 in 
Rn, and a diffeomorphism g : V → U0 such that f ◦ g = π. 

Proof. Let Tp : Rn → Rn be the translation defined by x → x + p. Replacing f by 
f ◦ Tp we can assume that p = 0 and f(0) = 0. 

Let A = (Df)(0), where A : Rn Rk is onto by the assumption that f is a →
submersion. So, there exists a bijective linear map B : Rn Rn such that A B = π.→ ◦
Replacing f by f ◦ B we can assume that Df(0) = π. 

Define a map h : U Rn by → 

h(x1, . . . , xn) = (f(x1, . . . , xk); xk+1, . . . , xn). (6.3) 

Note that (1)Dh(0) = I; and (2) πh = f . By (1), the function hmaps a neighborhood 
U0 of 0 in U diffeomorphically onto a neighborhood V of 0 in Rn . By (2), we have 
π = f h−1 . Take g = h−1 .◦ 

There is a companion theorem having to do with immersions. 

Definition 6.3. Let U be an open subset of Rk, and let f : U → Rn be a C∞ map. 
Let p ∈ U . The map f is an immersion at p if (Df)(p) : Rk Rn is injective →
(onetoone). 

Canonical Immersion Thoerem. Let U be a neighborhood of 0 in Rk, and let 
f : U → Rn be a C∞ map. Assume that f is an immersion at 0. Then there exists a 
neighborhood V of f(0) = p in Rn, a neighborhood W of 0 in Rk, and a diffeomorphism 
g : V → W such that ι−1(W ) ⊆ U and g ◦ f = ι. 

Proof. Replacing f by Tp ◦ f , we can assume that f(0) = 0. Let A = Df(0), so 
A : Rk Rn is injective. There exists a linear map B : Rn Rn such that BA = ι.→ →
Replacing f by B ◦ f , we can assume that Df(0) = ι. 

Let � = n − k. Since U ⊆ Rk, we get U × R� ⊆ Rk × R� = Rn . Define a map 
h : U × R� Rn by → 

h(x1, . . . , xn) = f(x1, . . . , xk) + (0, . . . , 0, xk+1, . . . , xn). (6.4) 

One can check that (1) Dh(0) = I; and (2) h ι = f .◦
By (1), the function h maps a neighborhood W of 0 in U × R� diffeomorphically 

onto a neighborhood V of 0 in Rn . Moreover, W ⊆ U × R�, so ι−1(W ) ⊆ U . 
By (2), we obtain the canonical immersion map ι = h−1 f . Take g = h−1 .◦ 
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6.2 Definition of Manifold 

Now we move on to the study of manifolds. 
Let X be a subset of Rn, let Y be a subset of Rm, and let f : X Y be a →

continuous map. We define that the map f is a C∞ map if for every point p ∈ X 
there exists a neighborhood Up of p in Rn and a C∞ map gp : U Rn such that p → 
gp X ∩ Up = f .|

We showed in the homework that if f : X → Y is a C∞ map, then there exists a 
neighborhood U of X in Rn and a C∞ map g : U Rn extending f .→ 

Definition 6.4. A map f : X → Y is a diffeomorphism if it is onetoone, onto, a 
C∞ map, and f−1 : Y → X is C∞. 

Let X be a subset of RN . 

Definition 6.5. The set X is an ndimensional manifold if for every point p ∈ X 
there exists a neighborhood V of p in RN , an open set U in Rm, and a diffeomorphism 
f : U → V ∩ X. The collection (f, U,X) is called a parameterization of X at p. 

This definition does not illustrate how manifolds come up in nature. Usually 
manifolds come up in the following scenario. 

Let W be open in RN , and let fi : W → R, i = 1, . . . , � be C∞ functions. Suppose 
you want to study the solution space of 

fi(x1, . . . , xN) = 0, i = 1, . . . , �. (6.5) 

Then you consider the mapping f : W R� defined by → 

f(x) = (f1(x), . . . , f�(x)). (6.6) 

Claim. If for every p ∈ W the map f is a submersion of p, then Equation 6.6 defines 
a kdimensional manifold, where k = N − �. 
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