
Lecture 29

We have been studying the important invariant called the degree of f . Today we 

show that the degree is a “topological invariant.” 

5.3 Topological Invariance of Degree 

Recall that given a subset A of Rm and a function F : A → R�, we say that F is C∞ 

if it extends to a C∞ map on a neighborhood of A. 
Let U be open in Rn, let V be open in Rk, and let A = U × [0, 1]. 

Definition 5.22. Let f0, f1 : U → V be C∞ maps. The maps f0 and f1 are homotopic 
if there is a C∞ map F : U × [0, 1] → V such that F (p, 0) = f0(p) and F (p, 1) = f1(p) 
for all p ∈ U . 

Let ft : U → V be the map defined by 

ft(p) = F (p, t). (5.144) 

Note that F ∈ C∞ = So, ft : U → V , where 0 ≤ t ≤ 1, gives a family ⇒ ft ∈ C∞. 
of maps parameterized by t. The family of maps ft is called a C∞ deformation of f0 

into f1. 

Definition 5.23. The map F is a proper homotopy if for all compact sets A ⊆ V , 
the preimage F−1(A) is compact. 

Denote by π the map π : U × [0, 1] → U that sends (p, t) → t. Let A ⊆ V 
be compact. Then B = π(F−1(A)) is compact, and for all t, f−1(A) ⊆ B. As a t 

consequence, each ft is proper. 
We concentrate on the case where U, V are open connected subsets of Rn and 

f0, f1 : U → V are proper C∞ maps. We now prove that the degree is a topological 
invariant. 

Theorem 5.24. If f0 and f1 are homotopic by a proper homotopy, then 

deg(f0) = deg(f1). (5.145) 

Proof. Let ω ∈ Ωn
c (V ) and let supp ω = A. Let F : U ×I → V be a proper homotopy 

between f0 and f1. Take B = π(F−1(A)), which is compact. For all t ∈ [0, 1], 
f−1(A) ⊆ B.t 

Let us compute f ∗ω. We can write ω = φ(x)dx1 ∧ · · · ∧ dxn, where supp φ ⊆ A.t 

So, � � 
∂Fi

f ∗ω = φ(F (x, t)) det 
∂xj 

(x, t) dx1 ∧ · · · ∧ dxn, (5.146) t 
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and


f ∗ω = deg(ft) ω. t 
U V (5.147) 

∂Fi 
= φ(F (x, t)) det (x, t) dx1 . . . dxn. 

∂xjU 

Notice that the integrand is supported in the compact set B for all t, and it is C∞ 

as a function of x and t. By Exercise #2 in section 2 of the Supplementary Notes, 
this implies that the integral is C∞ in t. From Equation 5.147, we can conclude that 
deg(ft) is a C∞ function of t. 

Now here is the trick. Last lecture we showed that deg(ft) is an integer. Since 
deg(ft) is continuous, it must be a constant deg(ft) = constant. 

We consider a simple application of the above theorem. Let U = V = R2, and 
think of R2 = C. We make the following associations: 

i2 = −1 (5.148) 

z = x + iy (5.149) 

z̄ = x − iy (5.150) 
2 2 zz̄ = |z|2 = x + y (5.151) 

dz = dx + idy (5.152) 

dz̄ = dx − idy (5.153) 

dz ∧ dz̄ =	−2idx ∧ dy (5.154) 

1 
dx ∧ dy = idz ∧ dz̄.	 (5.155) 
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Consider a map f : R2 R2, thinking of R2 = C, defined by → 

n−1

if(z) = z n + ciz , ci ∈ C.	 (5.156) 
i=0 

Claim. The map f is proper. 

Proof. Let C = ci . For |z > 1,| | | 
n−1

ciz 
i z .	 (5.157) ≤ C| |n−1 

i=0 

So, 

i z|f(z)| ≥ | |n − ciz 

n z− C n−1 = z| | | |
C 

(5.158)


n = |z| 1 − . 
z| | 
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For |z| > 2C, 
z|f(z)| ≥ | |n 

. (5.159) 
2 

So, if R > 1 and R > 2C, then f−1(BR) ⊆ BR1 , where Rn 
1/2 ≤ R (and where Br 

denotes the ball of radius r). So f is proper. 

Now, let us define a homotopy F : C × [0, 1] → C by 

n−1

F (z, t) = z n + t ciz 
i . (5.160) 

i=0 

We claim that F−1(BR) ⊆ BR1 × [0, 1], by exactly the same argument as above. So 
F is proper. 

Notice that 

F (z, 1) = f1(z) = f(z), (5.161) 

F (z, 0) = f0(z) = z n . (5.162) 

So, by the above theorem, deg(f) = deg(f0). 
nLet us compute deg(f0) by brute force. We have f0(z) = z , so 

n−1f0 
∗dz = dzn = nz dz, (5.163) 

nf0 
∗dz̄ = dz̄ = nz̄n−1dz̄. (5.164) 

Using the associations defined above, 

i 
f0 
∗(dx ∧ dy) = f0 

∗(dz ∧ dz̄)
2 
i 

= f0 
∗dz ∧ f0 

∗dz̄
(5.165) 2 

= 
i
n 2 z 2(n−1)dz ∧ dz̄

2 
| |

2+ n z 2n−2dx ∧ dy. | |

Let φ ∈ C0
∞(R) such that 

∞ 

φ(s)ds = 1. (5.166) 
0 

Let ω = φ( z 2)dx ∧ dy. We calculate R2 ω. Let us use polar coordinates, where | |
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2r = x2 + y = |z|. 

ω = φ(|z|2)dxdy 
R2 �R2 

= φ(r 2)rdrdθ 
R2 

= 2π 
∞ 

φ(r 2)rdr 
(5.167) 

o 
∞ ds 

+ 2π φ(s) 
20 

= π. 

Now we calculate f ∗ω. First, we note that 0 

2nf ∗ω = φ(|z| )n 2 z 2n−2dx ∧ dy. (5.168) 0 | |

So, 

∞
2f0 

∗ω = n φ(r 2n)r 2n−2rdrdθ 
0 

∞
2= n (2π) φ(r 2n)r 2n−1dr �0 (5.169) 

∞ ds2= n (2π) φ(s)
2n0 

= nπ. 

To summarize, we have calculated that 

ω = π and f0 
∗ω = nπ. (5.170) 

R2 R2 

Therefore, 
deg(f0) = deg(f) = n. (5.171) 

A better way to do the above calculation is in the homework: problem #6 of section 
6 of the Supplementary Notes. 

Last lecture we showed that if deg(f) = 0, then the map f is onto. Applying this 
to the above example, we find that the algebraic equation 

n−1

n i z + ciz = 0 (5.172) 
i=0 

has a solution. This is known as the Fundamental Theorem of Algebra.
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