Lecture 29

We have been studying the important invariant called the degree of f. Today we show that the degree is a "topological invariant."

5.3 Topological Invariance of Degree

Recall that given a subset A of \mathbb{R}^{m} and a function $F: A \rightarrow \mathbb{R}^{\ell}$, we say that F is \mathcal{C}^{∞} if it extends to a \mathcal{C}^{∞} map on a neighborhood of A.

Let U be open in \mathbb{R}^{n}, let V be open in \mathbb{R}^{k}, and let $A=U \times[0,1]$.
Definition 5.22. Let $f_{0}, f_{1}: U \rightarrow V$ be \mathcal{C}^{∞} maps. The maps f_{0} and f_{1} are homotopic if there is a $\mathcal{C}^{\infty} \operatorname{map} F: U \times[0,1] \rightarrow V$ such that $F(p, 0)=f_{0}(p)$ and $F(p, 1)=f_{1}(p)$ for all $p \in U$.

Let $f_{t}: U \rightarrow V$ be the map defined by

$$
\begin{equation*}
f_{t}(p)=F(p, t) . \tag{5.144}
\end{equation*}
$$

Note that $F \in \mathcal{C}^{\infty} \Longrightarrow f_{t} \in \mathcal{C}^{\infty}$. So, $f_{t}: U \rightarrow V$, where $0 \leq t \leq 1$, gives a family of maps parameterized by t. The family of maps f_{t} is called a \mathcal{C}^{∞} deformation of f_{0} into f_{1}.

Definition 5.23. The map F is a proper homotopy if for all compact sets $A \subseteq V$, the pre-image $F^{-1}(A)$ is compact.

Denote by π the map $\pi: U \times[0,1] \rightarrow U$ that sends $(p, t) \rightarrow t$. Let $A \subseteq V$ be compact. Then $B=\pi\left(F^{-1}(A)\right)$ is compact, and for all $t, f_{t}^{-1}(A) \subseteq B$. As a consequence, each f_{t} is proper.

We concentrate on the case where U, V are open connected subsets of \mathbb{R}^{n} and $f_{0}, f_{1}: U \rightarrow V$ are proper \mathcal{C}^{∞} maps. We now prove that the degree is a topological invariant.

Theorem 5.24. If f_{0} and f_{1} are homotopic by a proper homotopy, then

$$
\begin{equation*}
\operatorname{deg}\left(f_{0}\right)=\operatorname{deg}\left(f_{1}\right) \tag{5.145}
\end{equation*}
$$

Proof. Let $\omega \in \Omega_{c}^{n}(V)$ and let supp $\omega=A$. Let $F: U \times I \rightarrow V$ be a proper homotopy between f_{0} and f_{1}. Take $B=\pi\left(F^{-1}(A)\right)$, which is compact. For all $t \in[0,1]$, $f_{t}^{-1}(A) \subseteq B$.

Let us compute $f_{t}^{*} \omega$. We can write $\omega=\phi(x) d x_{1} \wedge \cdots \wedge d x_{n}$, where $\operatorname{supp} \phi \subseteq A$. So,

$$
\begin{equation*}
f_{t}^{*} \omega=\phi(F(x, t)) \operatorname{det}\left[\frac{\partial F_{i}}{\partial x_{j}}(x, t)\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.146}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{U} f_{t}^{*} \omega & =\operatorname{deg}\left(f_{t}\right) \int_{V} \omega \\
& =\int_{U} \phi(F(x, t)) \operatorname{det}\left[\frac{\partial F_{i}}{\partial x_{j}}(x, t)\right] d x_{1} \ldots d x_{n} \tag{5.147}
\end{align*}
$$

Notice that the integrand is supported in the compact set B for all t, and it is \mathcal{C}^{∞} as a function of x and t. By Exercise \#2 in section 2 of the Supplementary Notes, this implies that the integral is \mathcal{C}^{∞} in t. From Equation 5.147, we can conclude that $\operatorname{deg}\left(f_{t}\right)$ is a \mathcal{C}^{∞} function of t.

Now here is the trick. Last lecture we showed that $\operatorname{deg}\left(f_{t}\right)$ is an integer. Since $\operatorname{deg}\left(f_{t}\right)$ is continuous, it must be a constant $\operatorname{deg}\left(f_{t}\right)=$ constant.

We consider a simple application of the above theorem. Let $U=V=\mathbb{R}^{2}$, and think of $\mathbb{R}^{2}=\mathbb{C}$. We make the following associations:

$$
\begin{align*}
i^{2} & =-1 \tag{5.148}\\
z & =x+i y \tag{5.149}\\
\bar{z} & =x-i y \tag{5.150}\\
z \bar{z} & =|z|^{2}=x^{2}+y^{2} \tag{5.151}\\
d z & =d x+i d y \tag{5.152}\\
d \bar{z} & =d x-i d y \tag{5.153}\\
d z \wedge d \bar{z} & =-2 i d x \wedge d y \tag{5.154}\\
d x \wedge d y & =\frac{1}{2} i d z \wedge d \bar{z} . \tag{5.155}
\end{align*}
$$

Consider a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, thinking of $\mathbb{R}^{2}=\mathbb{C}$, defined by

$$
\begin{equation*}
f(z)=z^{n}+\sum_{i=0}^{n-1} c_{i} z^{i}, c_{i} \in \mathbb{C} \tag{5.156}
\end{equation*}
$$

Claim. The map f is proper.
Proof. Let $C=\sum\left|c_{i}\right|$. For $|z|>1$,

$$
\begin{equation*}
\left|\sum_{i=0}^{n-1} c_{i} z^{i}\right| \leq C|z|^{n-1} \tag{5.157}
\end{equation*}
$$

So,

$$
\begin{align*}
|f(z)| & \geq|z|^{n}-\left|\sum c_{i} z^{i}\right| \\
& =|z|^{n}-C|z|^{n-1} \tag{5.158}\\
& =|z|^{n}\left(1-\frac{C}{|z|}\right) .
\end{align*}
$$

For $|z|>2 C$,

$$
\begin{equation*}
|f(z)| \geq \frac{|z|^{n}}{2} \tag{5.159}
\end{equation*}
$$

So, if $R>1$ and $R>2 C$, then $f^{-1}\left(B_{R}\right) \subseteq B_{R_{1}}$, where $R_{1}^{n} / 2 \leq R$ (and where B_{r} denotes the ball of radius r). So f is proper.

Now, let us define a homotopy $F: \mathbb{C} \times[0,1] \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
F(z, t)=z^{n}+t \sum_{i=0}^{n-1} c_{i} z^{i} \tag{5.160}
\end{equation*}
$$

We claim that $F^{-1}\left(B_{R}\right) \subseteq B_{R_{1}} \times[0,1]$, by exactly the same argument as above. So F is proper.

Notice that

$$
\begin{align*}
& F(z, 1)=f_{1}(z)=f(z) \tag{5.161}\\
& F(z, 0)=f_{0}(z)=z^{n} \tag{5.162}
\end{align*}
$$

So, by the above theorem, $\operatorname{deg}(f)=\operatorname{deg}\left(f_{0}\right)$.
Let us compute $\operatorname{deg}\left(f_{0}\right)$ by brute force. We have $f_{0}(z)=z^{n}$, so

$$
\begin{align*}
& f_{0}^{*} d z=d z^{n}=n z^{n-1} d z \tag{5.163}\\
& f_{0}^{*} d \bar{z}=d \bar{z}^{n}=n \bar{z}^{n-1} d \bar{z} \tag{5.164}
\end{align*}
$$

Using the associations defined above,

$$
\begin{align*}
f_{0}^{*}(d x \wedge d y) & =\frac{i}{2} f_{0}^{*}(d z \wedge d \bar{z}) \\
& =\frac{i}{2} f_{0}^{*} d z \wedge f_{0}^{*} d \bar{z} \tag{5.165}\\
& =\frac{i}{2} n^{2}|z|^{2(n-1)} d z \wedge d \bar{z} \\
& +n^{2}|z|^{2 n-2} d x \wedge d y
\end{align*}
$$

Let $\phi \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \phi(s) d s=1 \tag{5.166}
\end{equation*}
$$

Let $\omega=\phi\left(|z|^{2}\right) d x \wedge d y$. We calculate $\int_{\mathbb{R}^{2}} \omega$. Let us use polar coordinates, where

$$
r=\sqrt{x^{2}+y^{2}}=|z|
$$

$$
\begin{align*}
\int_{\mathbb{R}^{2}} \omega & =\int_{\mathbb{R}^{2}} \phi\left(|z|^{2}\right) d x d y \\
& =\int_{\mathbb{R}^{2}} \phi\left(r^{2}\right) r d r d \theta \\
& =2 \pi \int_{o}^{\infty} \phi\left(r^{2}\right) r d r \tag{5.167}\\
& +2 \pi \int_{0}^{\infty} \phi(s) \frac{d s}{2} \\
& =\pi
\end{align*}
$$

Now we calculate $\int f_{0}^{*} \omega$. First, we note that

$$
\begin{equation*}
f_{0}^{*} \omega=\phi\left(|z|^{2 n}\right) n^{2}|z|^{2 n-2} d x \wedge d y \tag{5.168}
\end{equation*}
$$

So,

$$
\begin{align*}
\int f_{0}^{*} \omega & =n^{2} \int_{0}^{\infty} \phi\left(r^{2 n}\right) r^{2 n-2} r d r d \theta \\
& =n^{2}(2 \pi) \int_{0}^{\infty} \phi\left(r^{2 n}\right) r^{2 n-1} d r \tag{5.169}\\
& =n^{2}(2 \pi) \int_{0}^{\infty} \phi(s) \frac{d s}{2 n} \\
& =n \pi
\end{align*}
$$

To summarize, we have calculated that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \omega=\pi \quad \text { and } \quad \int_{\mathbb{R}^{2}} f_{0}^{*} \omega=n \pi . \tag{5.170}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{deg}\left(f_{0}\right)=\operatorname{deg}(f)=n \tag{5.171}
\end{equation*}
$$

A better way to do the above calculation is in the homework: problem $\# 6$ of section 6 of the Supplementary Notes.

Last lecture we showed that if $\operatorname{deg}(f) \neq 0$, then the map f is onto. Applying this to the above example, we find that the algebraic equation

$$
\begin{equation*}
z^{n}+\sum_{i=0}^{n-1} c_{i} z^{i}=0 \tag{5.172}
\end{equation*}
$$

has a solution. This is known as the Fundamental Theorem of Algebra.

