Lecture 27

We proved the following Poincare Lemma:
Poincare Lemma. Let U be a connected open subset of \mathbb{R}^{n}, and let $\omega \in \Omega_{c}^{n}(U)$. The following conditions are equivalent:

1. $\int_{U} \omega=0$,
2. $\omega=d \mu$, for some $\mu \in \Omega_{c}^{n-1}(U)$.

We first proved this for the case $U=\operatorname{Int} Q$, where Q was a rectangle. Then we used this result to generalize to arbitrary open connected sets. We discussed a nice application: proper maps and degree.

Let U, V be open subsets of \mathbb{R}^{n}, and let $f: U \rightarrow V$ be a \mathcal{C}^{∞} map. The map f is proper if for every compact set $C \subseteq V$, the pre-image $f^{-1}(C)$ is also compact. Hence, if f is proper, then

$$
\begin{equation*}
f^{*} \Omega_{c}^{k}(V) \subseteq \Omega_{c}^{k}(U) \tag{5.88}
\end{equation*}
$$

That is, if $\omega \in \Omega_{c}^{k}(V)$, then $f^{*} \omega \in \Omega_{c}^{k}(U)$, for all k.
When $k=n$,

$$
\begin{equation*}
\omega \in \Omega_{c}^{n}(V) \tag{5.89}
\end{equation*}
$$

In which case, we compare

$$
\begin{equation*}
\int_{v} \omega \text { and } \int_{U} f^{*} \omega \tag{5.90}
\end{equation*}
$$

Using the Poincare Lemma, we obtain the following theorem.
Theorem 5.14. There exists a constant γ_{f} with the property that for all $\omega \in \Omega_{c}^{n}(V)$,

$$
\begin{equation*}
\int_{U} f^{*} \omega=\gamma_{f} \int_{V} \omega \tag{5.91}
\end{equation*}
$$

We call this constant the degree of f,

Definition 5.15.

$$
\begin{equation*}
\operatorname{deg}(f)=\gamma_{f} \tag{5.92}
\end{equation*}
$$

Let U, V, W be open connected subsets of \mathbb{R}^{n}, and let $f: U \rightarrow V$ and $g: V \rightarrow W$ be proper \mathcal{C}^{∞} maps. Then the map $g \circ f: U \rightarrow W$ is proper, and

$$
\begin{equation*}
\operatorname{deg}(g \circ f)=\operatorname{deg}(f) \operatorname{deg}(g) . \tag{5.93}
\end{equation*}
$$

Proof Hint: For all $\omega \in \Omega_{c}^{n}(W),(g \circ f)^{*} \omega=f^{*}\left(g^{*} \omega\right)$.

We give some examples of the degree of various maps. Let $f=T_{a}$, the transposition by a. That is, let $f(x)=x+a$. From \#4 in section 4 of the Supplementary Notes, the map $T_{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is proper. One can show that $\operatorname{deg}\left(T_{a}\right)=1$.

As another example, let $f=A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a bijective liner map. Then

$$
\operatorname{deg} A= \begin{cases}1 & \text { if } \operatorname{det} A>0 \tag{5.94}\\ -1 & \text { if } \operatorname{det} A<0\end{cases}
$$

We now study the degree as it pertains to orientation preserving and orientation reversing maps.

Let U, V be connected open sets in \mathbb{R}^{n}, and let $f: U \rightarrow V$ be a diffeomorphism. Take $p \in U$. Then $D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one and onto. The map f is orientation preserving if $\operatorname{det} D f(p)>0$ for all $p \in U$, and the map f is orientation reversing if $\operatorname{deg} D f(p)<0$ for all $p \in U$.

Theorem 5.16. If f is orientation preserving, then $\operatorname{deg}(f)=1$; if f is orientation reversing, then $\operatorname{deg}(f)=-1$.

Proof. Let $a \in U$ and $b=f(a)$. Define

$$
\begin{equation*}
f_{\text {old }}=f \tag{5.95}
\end{equation*}
$$

and define

$$
\begin{equation*}
f_{\text {new }}=T_{-b} \circ f_{\text {old }} \circ T_{a}, \tag{5.96}
\end{equation*}
$$

where $T_{-b}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $T_{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are transpositions by $-b$ and a, respectively.
By the formula $\operatorname{deg}(g \circ f)=\operatorname{deg}(f) \operatorname{deg}(g)$,

$$
\begin{align*}
\operatorname{deg}\left(f_{\text {new }}\right) & =\operatorname{deg}\left(T_{-b}\right) \operatorname{deg}\left(f_{\text {old }}\right) \operatorname{deg}\left(T_{a}\right) \tag{5.97}\\
& =\operatorname{deg}(\text { old }) .
\end{align*}
$$

By replacing f with $f_{\text {new }}$, we can assume that $0 \in U$ and $f(0)=0$.
We can make yet another simplification, that $D f(0)=I$, the identity. To see this, let $D f(0)=A$, where $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Taking our new f, we redefine $f_{\text {old }}=f$, and we redefine $f_{\text {new }}=A^{-1} \circ f_{\text {old }}$. Then,

$$
\begin{equation*}
\operatorname{deg}\left(f_{\text {new }}\right)=\operatorname{deg}(A) \operatorname{deg} \operatorname{deg}\left(f_{\text {old }}\right) \tag{5.98}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{deg} A & =\operatorname{deg}\left(D f_{\text {old }}\right) \\
& = \begin{cases}1 & \text { if } D f_{\text {old }} \text { is orient. preserving } \\
-1 & \text { if } D f_{\text {old }} \text { is orient. reversing. }\end{cases} \tag{5.99}
\end{align*}
$$

We again replace f with $f_{\text {new }}$. It suffices to prove the theorem for this new f. To summarize, we can assume that

$$
\begin{equation*}
0 \in U, \quad f(0)=0 . \quad \text { and } \quad D f(0)=I \tag{5.100}
\end{equation*}
$$

Consider $g(x)=x-f(x)$ (so $f(x)=x-g(x))$. Note that $(D g)(0)=I-I=0$. If we write $g=\left(g_{1}, \ldots, g_{n}\right)$, then

$$
\begin{equation*}
\left[\frac{\partial g_{i}}{\partial x_{j}}(0)\right]=0 . \tag{5.101}
\end{equation*}
$$

So, each $\frac{\partial g_{i}}{\partial x_{j}}(0)=0$.
Lemma 5.17. There exists $\delta>0$ such that for all $|x|<\delta$,

$$
\begin{equation*}
|g(x)| \leq \frac{|x|}{2} \tag{5.102}
\end{equation*}
$$

Proof. So far, we know that $g(0)=0-f(0)=0$, and $\frac{\partial g_{i}}{\partial x_{j}}(0)=0$. By continuity, there exists $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{\partial g_{i}}{\partial x_{j}}(x)\right| \leq \frac{1}{2 n} \tag{5.103}
\end{equation*}
$$

for all $|x|<\delta$. Using the Mean-value Theorem, for all $|x|<\delta$,

$$
\begin{align*}
g_{i}(x) & =g_{i}(x)-g_{i}(0) \\
& =\sum \frac{\partial g_{i}}{\partial x_{j}}(c) x_{j} \tag{5.104}
\end{align*}
$$

where $c=t_{0} x$ for some $0<t_{0}<1$. So,

$$
\begin{align*}
\left|g_{i}(x)\right| & \leq \sum_{i=1}^{n} \frac{1}{2 n}\left|x_{i}\right| \\
& \leq \frac{1}{2} \max \left\{\left|x_{i}\right|\right\} \tag{5.105}\\
& =\frac{1}{2}|x|
\end{align*}
$$

Define $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as follows. Let $\rho \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, defined to have the follow properties

$$
\rho(x)= \begin{cases}1 & \text { if }|x|<\delta / 2 \tag{5.106}\\ 0 & \text { if }|x|>\delta \\ 0 \leq \rho(x) \leq 1 & \text { otherwise }\end{cases}
$$

Remember that $f(x)=x-g(x)$. Define

$$
\tilde{f}= \begin{cases}x-\rho(x) g(x) & \text { if }|x|<\delta \tag{5.107}\\ x & \text { if }|x|>\delta\end{cases}
$$

Claim. The map \tilde{f} has the following properties:

1. $\tilde{f}=f(x)$ for all $|x|<\frac{\delta}{2}$,
2. $\tilde{f}=x$ for all $|x|>\delta$,
3. $|\tilde{f}(x)| \geq \frac{|x|}{2}$,
4. $|\tilde{f}(x)| \leq 2|x|$.

Proof. We only proof properties (3) and (4). First we prove property (3). We have $\tilde{f}(x)=x-\rho(x) g(x)=x$ when $|x| \geq \delta$, so $|\tilde{f}(x)|=|x|$ when $|x| \geq \delta$. For $|x|<\delta$, we have

$$
\begin{align*}
|\tilde{f}(x)| & \geq|x|-\rho(x)|g(x)| \\
& =|x|-|g(x)| \\
& \geq|x|-\frac{|x|}{2} \tag{5.108}\\
& =\frac{|x|}{2} .
\end{align*}
$$

We now prove property (4). We have $\tilde{f}(x)=x-\rho(x) g(x)$, so $|\tilde{f}(x)|=|x|$ for $x \geq \delta$. For $x<\delta$, we have

$$
\begin{align*}
|\tilde{f}(x)| & \leq|x|+\rho(x)|g(x)| \\
& \leq|x|+\frac{1}{2}|x| \tag{5.109}\\
& \leq 2|x| .
\end{align*}
$$

Let $Q_{r} \equiv\left\{x \in \mathbb{R}^{n}:|x| \leq r\right\}$. The student should check that

$$
\begin{equation*}
\text { Property }(3) \Longrightarrow \tilde{f}^{-1}\left(Q_{r}\right) \subseteq Q_{2 r} \tag{5.110}
\end{equation*}
$$

and that

$$
\begin{equation*}
\operatorname{Property}(4) \Longrightarrow \tilde{f}^{-1}\left(\mathbb{R}^{n}-Q_{2 r}\right) \subseteq \mathbb{R}^{n}-Q_{r} \tag{5.111}
\end{equation*}
$$

Notice that $\tilde{f}^{-1}\left(Q_{r}\right) \subseteq Q_{2 r} \Longrightarrow \tilde{f}$ is proper.
Now we turn back to the map f. Remember that $f: U \rightarrow V$ is a diffeomorphism and that $f(0)=0$. So, the set $f\left(\operatorname{Int} Q_{\delta / 2}\right)$ is an open neighborhood of 0 in \mathbb{R}^{n}. Take

$$
\begin{equation*}
\omega \in \Omega_{c}^{n}\left(f\left(\operatorname{Int} Q_{\delta / 2}\right) \cap \operatorname{Int} Q_{\delta / 4}\right) \tag{5.112}
\end{equation*}
$$

such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \omega=1 \tag{5.113}
\end{equation*}
$$

Then,

$$
\begin{equation*}
f^{*} \omega \in \Omega_{c}^{n}\left(Q_{\delta / 2}\right) \tag{5.114}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{f}^{*} \omega \in \Omega_{c}^{n}\left(Q_{\delta / 2}\right), \tag{5.115}
\end{equation*}
$$

by Equation 5.110 . This shows that $f^{*} \omega=\tilde{f}^{*} \omega$. Hence,

$$
\begin{align*}
\int_{U} f^{*} \omega & =\int_{U} \tilde{f}^{*} \omega=\operatorname{deg}(f) \int_{V} \omega \tag{5.116}\\
& =\operatorname{deg}(\tilde{f}) \int_{V} \omega
\end{align*}
$$

where

$$
\begin{equation*}
\int_{V} \omega=1 \tag{5.117}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{deg}(f)=\operatorname{deg}(\tilde{f}) \tag{5.118}
\end{equation*}
$$

Now, let us use Equation 5.111. Choose $\omega \in \Omega_{c}^{n}\left(\mathbb{R}^{n}-Q_{2 \delta}\right)$. So,

$$
\begin{equation*}
f^{*} \omega \in \Omega_{c}^{n}\left(\mathbb{R}^{n}-Q_{\delta}\right) \tag{5.119}
\end{equation*}
$$

Again we take

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \omega=1 \tag{5.120}
\end{equation*}
$$

By property (2), $\tilde{f}=I$ on $\mathbb{R}^{n}-Q_{\delta}$, so

$$
\begin{equation*}
\tilde{f}^{*} \omega=\omega \tag{5.121}
\end{equation*}
$$

Integrating,

$$
\begin{equation*}
\int_{\mathbb{R}}^{n} \tilde{f}^{*} \omega=\operatorname{deg}(\tilde{f}) \int_{\mathbb{R}}^{n} \omega=\int_{\mathbb{R}}^{n} \omega . \tag{5.122}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{deg}(f)=\operatorname{deg}(\tilde{f})=1 \tag{5.123}
\end{equation*}
$$

