Lecture 24

We review the pullback operation from last lecture. Let U be open in \mathbb{R}^m and let V be open in \mathbb{R}^n . Let $f: U \to V$ be a \mathcal{C}^{∞} map, and let f(p) = q. From the map

$$df_p: T_p \mathbb{R}^m \to T_q \mathbb{R}^n, \tag{4.212}$$

we obtain the pullback map

$$(df_p)^* : \Lambda^k(T_q^*) \to \Lambda^k(T_p^*) \omega \in \Omega^k(V) \to f^*\omega \in \Omega^k(U).$$
(4.213)

We define, $f^*\omega_p = (df_p)^*\omega_q$, when $\omega_q \in \Lambda^k(T_q^*)$.

The pullback operation has some useful properties:

1. If $\omega_i \in \Omega^{k_i}(V), i = 1, 2$, then

$$f^*(\omega_1 \wedge \omega_2) = f^*\omega_1 \wedge f^*\omega_2. \tag{4.214}$$

2. If $\omega \in \Omega^k(V)$, then

$$df^*\omega = f^*d\omega. \tag{4.215}$$

We prove some other useful properties of the pullback operation.

Claim. For all $\omega \in \Omega^k(W)$,

$$f^*g^*\omega = (g \circ f)^*\omega. \tag{4.216}$$

Proof. Let f(p) = q and g(q) = w. We have the pullback maps

$$(df_p)^* : \Lambda^k(T_q^*) \to \Lambda^k(T_p^*) \tag{4.217}$$

$$(dg_q)^* : \Lambda^k(T_w^*) \to \Lambda^k(T_q^*) \tag{4.218}$$

$$(g \circ f)^* : \Lambda^k(T^*_w) \to \Lambda^k(T^*_p). \tag{4.219}$$

The chain rule says that

$$(dg \circ f)_p = (dg)_q \circ (df)_p, \tag{4.220}$$

 \mathbf{SO}

$$d(g \circ f)_p^* = (df_p)^* (dg_q)^*.$$
(4.221)

Let U, V be open sets in \mathbb{R}^n , and let $f : U \to V$ be a \mathcal{C}^{∞} map. We consider the pullback operation on *n*-forms $\omega \in \Omega^n(V)$. Let f(0) = q. Then

$$(dx_i)_p, \quad i = 1, \dots, n, \quad \text{is a basis of } T_p^*, \text{ and}$$

$$(4.222)$$

$$(dx_i)_q, \quad i = 1, \dots, n, \quad \text{is a basis of } T_q^*.$$
 (4.223)

Using $f_i = x_i \circ f$,

$$(df_p)^*(dx_i)_q = (df_i)_p$$

= $\sum \frac{\partial f_i}{\partial x_j} (p) (dx_j)_p.$ (4.224)

In the Multi-linear Algebra notes, we show that

$$(df_p)^*(dx_1)_q \wedge \dots \wedge (dx_n)_q = \det\left[\frac{\partial f_i}{\partial x_j}(p)\right] (dx_1)_p \wedge \dots \wedge (dx_n)_p.$$
(4.225)

So,

$$f^* dx_1 \wedge \dots \wedge dx_n = \det \left[\frac{\partial f_i}{\partial x_j}\right] dx_1 \wedge \dots \wedge dx_n.$$
 (4.226)

Given $\omega = \phi(x) dx_1 \wedge \cdots \wedge dx_n$, where $\phi \in \mathcal{C}^{\infty}$,

$$f^*\omega = \phi(f(x)) \det\left[\frac{\partial f_i}{\partial x_j}\right] dx_1 \wedge \dots \wedge dx_n.$$
 (4.227)

5 Integration with Differential Forms

Let U be an open set in \mathbb{R}^n , and let $\omega \in \Omega^k(U)$ be a differential k-form.

Definition 5.1. The *support* of ω is

$$\operatorname{supp}\,\omega = \overline{\{p \in U : \omega_p \neq 0\}}.\tag{5.1}$$

Definition 5.2. The k-form ω is compactly supported if supp ω is compact. We define

$$\Omega_c^k(U) =$$
 the space of all compactly supported k-forms. (5.2)

Note that

$$\Omega_c^0(U) = \mathcal{C}_0^\infty(\mathbb{R}^n).$$
(5.3)

Given $\omega \in \Omega^n_c(U)$, we can write

$$\omega = \phi(x) dx_1 \wedge \dots \wedge dx_n, \tag{5.4}$$

where $\phi \in \mathcal{C}_0^{\infty}(U)$.

Definition 5.3.

$$\int_{U} \omega \equiv \int_{U} \phi = \int_{U} \phi(x) dx_1 \dots dx_n.$$
(5.5)

We are going to state and prove the change of variables theorem for integrals of differential k-forms. To do so, we first need the notions of *orientation preserving* and *orientation reversing*.

Let U, V be open sets in \mathbb{R}^n . Let $f : U \to V$ be a \mathcal{C}^{∞} diffeomorphism. That is, for every $p \in U$, $Df(p) : \mathbb{R}^n \to \mathbb{R}^n$ is bijective. We associate Df(p) with the matrix

$$Df(p) \cong \left[\frac{\partial f_i}{\partial x_j}(p)\right].$$
 (5.6)

The map f is a diffeomorphism, so

$$\det\left[\frac{\partial f_i}{\partial x_j}(p)\right] \neq 0. \tag{5.7}$$

So, if U is connected, then this determinant is either positive everywhere or negative everywhere.

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The map f is orientation reversing if det < 0 everywhere.

The following is the change of variables theorem:

Theorem 5.5. If $\omega \in \Omega_c^n(V)$, then

$$\int_{U} f^* \omega = \int_{V} \omega \tag{5.8}$$

if f is orientation preserving, and

$$\int_{U} f^* \omega = -\int_{V} \omega \tag{5.9}$$

if f is orientation reversing.

In Munkres and most texts, this formula is written in slightly uglier notation. Let $\omega = \phi(x)dx_1 \wedge \cdots \wedge dx_n$, so

$$f^*\omega = \phi(f(x)) \det\left[\frac{\partial f_i}{\partial x_j}\right] dx_1 \wedge \dots \wedge dx_n.$$
 (5.10)

The theorem can be written as following:

Theorem 5.6. If f is orientation preserving, then

$$\int_{V} \phi = \int_{U} \phi \circ f \det \left[\frac{\partial f_i}{\partial x_j} \right].$$
(5.11)

This is the coordinate version of the theorem.

We now prove a useful theorem found in the Supplementary Notes (and Spivak) called Sard's Theorem.

Let U be open in \mathbb{R}^n , and let $f: U \to \mathbb{R}^n$ be a $\mathcal{C}^1(U)$ map. For every $p \in U$, we have the map $Df(p): \mathbb{R}^n \to \mathbb{R}^n$. We say that p is a *critical point of* f if Df(p) is not bijective. Denote

$$C_f =$$
 the set of all critical points of f . (5.12)

 \square

Sard's Theorem. The image $f(C_f)$ is of measure zero.

Proof. The proof is in the Supplementary Notes.

As an example of Sard's Theorem, let $c \in \mathbb{R}^n$ and let $f : U \to \mathbb{R}^n$ be the map defined by f(x) = c. Note that Df(p) = 0 for all $p \in U$, so $C_f = U$. The set $C_f = U$ is not a set of measure zero, but $f(C_f) = \{c\}$ is a set of measure zero.

As an exercise, you should prove the following claim:

Claim. Sard's Theorem is true for maps $f : U \to \mathbb{R}^n$, where U is an open, connected subset of \mathbb{R} .

Proof Hint: Let $f \in \mathcal{C}^{\infty}(U)$ and define $g = \frac{\partial f}{\partial x}$. The map g is continuous because $f \in \mathcal{C}^1(U)$. Let $I = [a, b] \subseteq U$, and define $\ell = b - a$. The continuity of g implies that g is uniformly continuous on I. That is, for every $\epsilon > 0$, there exists a number N > 0 such that $|g(x) - g(y)| < \epsilon$ whenever $x, y \in I$ and $|x - y| < \ell/N$.

Now, slice I into N equal subintervals. Let $I_r, r = 1, \ldots, k \leq N$ be the subintervals intersecting C_f . Prove the following lemma:

Lemma 5.7. If $x, y \in I_r$, then $|f(x) - f(y)| < \epsilon \ell / N$.

Proof Hint: Find $c \in I_r$ such that f(x) - f(y) = (x - y)g(c). There exists $c_0 \in I_r \cap C_f$ if and only if $g(c_0) = 0$. So, we can take

$$|g(c)| = |g(c) - g(c_0)| \le \epsilon.$$
(5.13)

Then $|f(x) - f(y)| \le \epsilon \ell / N$.

From the lemma, we can conclude that

$$f(I_r) \equiv J_r \tag{5.14}$$

is of length less than $\epsilon \ell / N$. Therefore,

$$f(C_f \cap I) \subset \bigcup_{r=1}^k J_r \tag{5.15}$$

is of length less than

$$\frac{\epsilon\ell}{N}k \le \frac{\epsilon\ell N}{N} = \epsilon\ell. \tag{5.16}$$

Letting $\epsilon \to 0$, we find that $F(C_f \cap I)$ is of measure zero.

To conclude the proof, let $I_m, m = 1, 2, 3, ...$, be an exhaustion of U by closed intervals $I_1 \subset I_2 \subset I_3 \subset \cdots$ such that $\bigcup I_m = U$. We have shown that $f(C_f \cap I_m)$ is measure zero. So, $f(C_f) = \bigcup f(C_f \cap I_m)$ implies that $f(C_f)$ is of measure zero. \Box