Lecture 24

We review the pullback operation from last lecture. Let U be open in \mathbb{R}^{m} and let V be open in \mathbb{R}^{n}. Let $f: U \rightarrow V$ be a \mathcal{C}^{∞} map, and let $f(p)=q$. From the map

$$
\begin{equation*}
d f_{p}: T_{p} \mathbb{R}^{m} \rightarrow T_{q} \mathbb{R}^{n}, \tag{4.212}
\end{equation*}
$$

we obtain the pullback map

$$
\begin{align*}
\left(d f_{p}\right)^{*}: \Lambda^{k}\left(T_{q}^{*}\right) & \rightarrow \Lambda^{k}\left(T_{p}^{*}\right) \tag{4.213}\\
\omega \in \Omega^{k}(V) & \rightarrow f^{*} \omega \in \Omega^{k}(U) .
\end{align*}
$$

We define, $f^{*} \omega_{p}=\left(d f_{p}\right)^{*} \omega_{q}$, when $\omega_{q} \in \Lambda^{k}\left(T_{q}^{*}\right)$.
The pullback operation has some useful properties:

1. If $\omega_{i} \in \Omega^{k_{i}}(V), i=1,2$, then

$$
\begin{equation*}
f^{*}\left(\omega_{1} \wedge \omega_{2}\right)=f^{*} \omega_{1} \wedge f^{*} \omega_{2} \tag{4.214}
\end{equation*}
$$

2. If $\omega \in \Omega^{k}(V)$, then

$$
\begin{equation*}
d f^{*} \omega=f^{*} d \omega . \tag{4.215}
\end{equation*}
$$

We prove some other useful properties of the pullback operation.
Claim. For all $\omega \in \Omega^{k}(W)$,

$$
\begin{equation*}
f^{*} g^{*} \omega=(g \circ f)^{*} \omega \tag{4.216}
\end{equation*}
$$

Proof. Let $f(p)=q$ and $g(q)=w$. We have the pullback maps

$$
\begin{align*}
\left(d f_{p}\right)^{*}: \Lambda^{k}\left(T_{q}^{*}\right) & \rightarrow \Lambda^{k}\left(T_{p}^{*}\right) \tag{4.217}\\
\left(d g_{q}\right)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) & \rightarrow \Lambda^{k}\left(T_{q}^{*}\right) \tag{4.218}\\
(g \circ f)^{*}: \Lambda^{k}\left(T_{w}^{*}\right) & \rightarrow \Lambda^{k}\left(T_{p}^{*}\right) . \tag{4.219}
\end{align*}
$$

The chain rule says that

$$
\begin{equation*}
(d g \circ f)_{p}=(d g)_{q} \circ(d f)_{p}, \tag{4.220}
\end{equation*}
$$

so

$$
\begin{equation*}
d(g \circ f)_{p}^{*}=\left(d f_{p}\right)^{*}\left(d g_{q}\right)^{*} \tag{4.221}
\end{equation*}
$$

Let U, V be open sets in \mathbb{R}^{n}, and let $f: U \rightarrow V$ be a \mathcal{C}^{∞} map. We consider the pullback operation on n-forms $\omega \in \Omega^{n}(V)$. Let $f(0)=q$. Then

$$
\begin{array}{ll}
\left(d x_{i}\right)_{p}, & i=1, \ldots, n, \quad \text { is a basis of } T_{p}^{*}, \text { and } \\
\left(d x_{i}\right)_{q}, & i=1, \ldots, n, \quad \text { is a basis of } T_{q}^{*} . \tag{4.223}
\end{array}
$$

Using $f_{i}=x_{i} \circ f$,

$$
\begin{align*}
\left(d f_{p}\right)^{*}\left(d x_{i}\right)_{q} & =\left(d f_{i}\right)_{p} \\
& =\sum \frac{\partial f_{i}}{\partial x_{j}}(p)\left(d x_{j}\right)_{p} . \tag{4.224}
\end{align*}
$$

In the Multi-linear Algebra notes, we show that

$$
\begin{equation*}
\left(d f_{p}\right)^{*}\left(d x_{1}\right)_{q} \wedge \cdots \wedge\left(d x_{n}\right)_{q}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]\left(d x_{1}\right)_{p} \wedge \cdots \wedge\left(d x_{n}\right)_{p} \tag{4.225}
\end{equation*}
$$

So,

$$
\begin{equation*}
f^{*} d x_{1} \wedge \cdots \wedge d x_{n}=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{4.226}
\end{equation*}
$$

Given $\omega=\phi(x) d x_{1} \wedge \cdots \wedge d x_{n}$, where $\phi \in \mathcal{C}^{\infty}$,

$$
\begin{equation*}
f^{*} \omega=\phi(f(x)) \operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} \tag{4.227}
\end{equation*}
$$

5 Integration with Differential Forms

Let U be an open set in \mathbb{R}^{n}, and let $\omega \in \Omega^{k}(U)$ be a differential k-form.
Definition 5.1. The support of ω is

$$
\begin{equation*}
\operatorname{supp} \omega=\overline{\left\{p \in U: \omega_{p} \neq 0\right\}} \tag{5.1}
\end{equation*}
$$

Definition 5.2. The k-form ω is compactly supported if supp ω is compact. We define

$$
\begin{equation*}
\Omega_{c}^{k}(U)=\text { the space of all compactly supported } k \text {-forms. } \tag{5.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Omega_{c}^{0}(U)=\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{5.3}
\end{equation*}
$$

Given $\omega \in \Omega_{c}^{n}(U)$, we can write

$$
\begin{equation*}
\omega=\phi(x) d x_{1} \wedge \cdots \wedge d x_{n} \tag{5.4}
\end{equation*}
$$

where $\phi \in \mathcal{C}_{0}^{\infty}(U)$.

Definition 5.3.

$$
\begin{equation*}
\int_{U} \omega \equiv \int_{U} \phi=\int_{U} \phi(x) d x_{1} \ldots d x_{n} \tag{5.5}
\end{equation*}
$$

We are going to state and prove the change of variables theorem for integrals of differential k-forms. To do so, we first need the notions of orientation preserving and orientation reversing.

Let U, V be open sets in \mathbb{R}^{n}. Let $f: U \rightarrow V$ be a \mathcal{C}^{∞} diffeomorphism. That is, for every $p \in U, D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is bijective. We associate $D f(p)$ with the matrix

$$
\begin{equation*}
D f(p) \cong\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right] \tag{5.6}
\end{equation*}
$$

The map f is a diffeomorphism, so

$$
\begin{equation*}
\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right] \neq 0 \tag{5.7}
\end{equation*}
$$

So, if U is connected, then this determinant is either positive everywhere or negative everywhere.

Definition 5.4. The map f is orientation preserving if det >0 everywhere. The map f is orientation reversing if det <0 everywhere.

The following is the change of variables theorem:
Theorem 5.5. If $\omega \in \Omega_{c}^{n}(V)$, then

$$
\begin{equation*}
\int_{U} f^{*} \omega=\int_{V} \omega \tag{5.8}
\end{equation*}
$$

if f is orientation preserving, and

$$
\begin{equation*}
\int_{U} f^{*} \omega=-\int_{V} \omega \tag{5.9}
\end{equation*}
$$

if f is orientation reversing.
In Munkres and most texts, this formula is written in slightly uglier notation. Let $\omega=\phi(x) d x_{1} \wedge \cdots \wedge d x_{n}$, so

$$
\begin{equation*}
f^{*} \omega=\phi(f(x)) \operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] d x_{1} \wedge \cdots \wedge d x_{n} . \tag{5.10}
\end{equation*}
$$

The theorem can be written as following:
Theorem 5.6. If f is orientation preserving, then

$$
\begin{equation*}
\int_{V} \phi=\int_{U} \phi \circ f \operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] . \tag{5.11}
\end{equation*}
$$

This is the coordinate version of the theorem.
We now prove a useful theorem found in the Supplementary Notes (and Spivak) called Sard's Theorem.

Let U be open in \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}^{n}$ be a $\mathcal{C}^{1}(U)$ map. For every $p \in U$, we have the map $D f(p): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We say that p is a critical point of f if $D f(p)$ is not bijective. Denote

$$
\begin{equation*}
C_{f}=\text { the set of all critical points of } f \tag{5.12}
\end{equation*}
$$

Sard's Theorem. The image $f\left(C_{f}\right)$ is of measure zero.
Proof. The proof is in the Supplementary Notes.
As an example of Sard's Theorem, let $c \in \mathbb{R}^{n}$ and let $f: U \rightarrow \mathbb{R}^{n}$ be the map defined by $f(x)=c$. Note that $D f(p)=0$ for all $p \in U$, so $C_{f}=U$. The set $C_{f}=U$ is not a set of measure zero, but $f\left(C_{f}\right)=\{c\}$ is a set of measure zero.

As an exercise, you should prove the following claim:
Claim. Sard's Theorem is true for maps $f: U \rightarrow \mathbb{R}^{n}$, where U is an open, connected subset of \mathbb{R}.
Proof Hint: Let $f \in \mathcal{C}^{\infty}(U)$ and define $g=\frac{\partial f}{\partial x}$. The map g is continuous because $f \in \mathcal{C}^{1}(U)$. Let $I=[a, b] \subseteq U$, and define $\ell=b-a$. The continuity of g implies that g is uniformly continuous on I. That is, for every $\epsilon>0$, there exists a number $N>0$ such that $|g(x)-g(y)|<\epsilon$ whenever $x, y \in I$ and $|x-y|<\ell / N$.

Now, slice I into N equal subintervals. Let $I_{r}, r=1, \ldots, k \leq N$ be the subintervals intersecting C_{f}. Prove the following lemma:
Lemma 5.7. If $x, y \in I_{r}$, then $|f(x)-f(y)|<\epsilon \ell / N$.
Proof Hint: Find $c \in I_{r}$ such that $f(x)-f(y)=(x-y) g(c)$. There exists $c_{0} \in I_{r} \cap C_{f}$ if and only if $g\left(c_{0}\right)=0$. So, we can take

$$
\begin{equation*}
|g(c)|=\left|g(c)-g\left(c_{0}\right)\right| \leq \epsilon \tag{5.13}
\end{equation*}
$$

Then $|f(x)-f(y)| \leq \epsilon \ell / N$.
From the lemma, we can conclude that

$$
\begin{equation*}
f\left(I_{r}\right) \equiv J_{r} \tag{5.14}
\end{equation*}
$$

is of length less than $\epsilon \ell / N$. Therefore,

$$
\begin{equation*}
f\left(C_{f} \cap I\right) \subset \bigcup_{r=1}^{k} J_{r} \tag{5.15}
\end{equation*}
$$

is of length less than

$$
\begin{equation*}
\frac{\epsilon \ell}{N} k \leq \frac{\epsilon \ell N}{N}=\epsilon \ell \tag{5.16}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0$, we find that $F\left(C_{f} \cap I\right)$ is of measure zero.
To conclude the proof, let $I_{m}, m=1,2,3, \ldots$, be an exhaustion of U by closed intervals $I_{1} \subset I_{2} \subset I_{3} \subset \cdots$ such that $\bigcup I_{m}=U$. We have shown that $f\left(C_{f} \cap I_{m}\right)$ is measure zero. So, $f\left(C_{f}\right)=\bigcup f\left(C_{f} \cap I_{m}\right)$ implies that $f\left(C_{f}\right)$ is of measure zero.

