
Lecture 24

We review the pullback operation from last lecture. Let U be open in Rm and let 

V be open in Rn . Let f : U → V be a C∞ map, and let f(p) = q. From the map 

dfp : TpRm TqRn , (4.212) → 

we obtain the pullback map 

(dfp)
∗ : Λk(Tq 

∗) → Λk(Tp 
∗) 

ω ∈ Ωk(V ) → f ∗ω ∈ Ωk(U). 
(4.213) 

We define, f ∗ωp = (dfp)
∗ωq, when ωq ∈ Λk(Tq 

∗). 
The pullback operation has some useful properties: 

1. If ωi ∈ Ωki(V ), i = 1, 2, then 

f ∗(ω1 ∧ ω2) = f ∗ω1 ∧ f ∗ω2. (4.214) 

2. If ω ∈ Ωk(V ), then 
df∗ω = f ∗dω. (4.215) 

We prove some other useful properties of the pullback operation. 

Claim. For all ω ∈ Ωk(W ), 
f ∗g∗ω = (g ◦ f)∗ω. (4.216) 

Proof. Let f(p) = q and g(q) = w. We have the pullback maps 

(dfp)
∗ :Λk(T ∗ 

q ) → Λk(T ∗ 
p ) (4.217) 

(dgq)
∗ :Λk(T ∗ 

w) → Λk(T ∗ 
q ) (4.218) 

(g ◦ f)∗ :Λk(T ∗ 
w) → Λk(T ∗ 

p ). (4.219) 

The chain rule says that 
(dg ◦ f)p = (dg)q ◦ (df)p, (4.220) 

so 
d(g ◦ f)∗ 

p = (dfp)
∗(dgq)

∗. (4.221) 

Let U, V be open sets in Rn, and let f : U → V be a C∞ map. 
pullback operation on nforms ω ∈ Ωn(V ). Let f(0) = q. Then 

We consider the 

(dxi)p, i = 1, . . . , n, is a basis of T ∗ 
p , and (4.222) 

(dxi)q, i = 1, . . . , n, is a basis of T ∗ 
q . (4.223) 
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Using fi = xi ◦ f , 

(dfp)
∗(dxi)q = (dfi)p � ∂fi (4.224) 

= (p)(dxj)p. 
∂xj 

In the Multilinear Algebra notes, we show that 

∂fi
(dfp)

∗(dx1)q ∧ · · · ∧ (dxn)q = det 
∂xj 

(p) (4.225) (dx1)p ∧ · · · ∧ (dxn)p. 

So, � � 
∂fi 

= det (4.226) f ∗dx1 ∧ · · · ∧ dxn 
∂xj 

dx1 ∧ · · · ∧ dxn. 

Given ω = φ(x)dx1 ∧ · · · ∧ dxn, where φ ∈ C∞, 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (4.227) 

5 Integration with Differential Forms 

Let U be an open set in Rn, and let ω ∈ Ωk(U) be a differential kform. 

Definition 5.1. The support of ω is 

supp ω = {p ∈ U : ωp = 0}. (5.1) 

Definition 5.2. The kform ω is compactly supported if supp ω is compact. We define 

Ωc
k(U) = the space of all compactly supported kforms. (5.2) 

Note that 
Ωc 

0(U) = C0
∞(Rn). (5.3) 

Given ω ∈ Ωn
c (U), we can write 

ω = φ(x)dx1 ∧ · · · ∧ dxn, (5.4) 

where φ ∈ C0
∞(U). 

Definition 5.3. � � � 
φ = φ(x)dx1 . . . dxn. (5.5) 

U 

ω ≡ 
U U 
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We are going to state and prove the change of variables theorem for integrals of 
differential kforms. To do so, we first need the notions of orientation preserving and 
orientation reversing. 

Let U, V be open sets in Rn . Let f : U → V be a C∞ diffeomorphism. That is, 
for every p ∈ U , Df(p) : Rn Rn is bijective. We associate Df(p) with the matrix → 

Df(p) ∼ ∂fi 
(p) . (5.6) = 

∂xj 

The map f is a diffeomorphism, so 

∂fi
det (p) = 0. (5.7) 

∂xj 
�

So, if U is connected, then this determinant is either positive everywhere or negative 
everywhere. 

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The 
map f is orientation reversing if det < 0 everywhere. 

The following is the change of variables theorem: 

Theorem 5.5. If ω ∈ Ωn
c (V ), then 

f ∗ω = ω (5.8) 
U V 

if f is orientation preserving, and 

f ∗ω = ω (5.9) − 
VU 

if f is orientation reversing. 

In Munkres and most texts, this formula is written in slightly uglier notation. Let 
ω = φ(x)dx1 ∧ · · · ∧ dxn, so 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (5.10) 

The theorem can be written as following: 

Theorem 5.6. If f is orientation preserving, then 

∂fi
φ = φ f det . (5.11) ◦

∂xjV U 
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This is the coordinate version of the theorem. 
We now prove a useful theorem found in the Supplementary Notes (and Spivak) 

called Sard’s Theorem. 
Let U be open in Rn, and let f : U → Rn be a C1(U) map. For every p ∈ U , we 

have the map Df(p) : Rn Rn . We say that p is a critical point of f if Df(p) is not→
bijective. Denote 

Cf = the set of all critical points of f. (5.12) 

Sard’s Theorem. The image f(Cf ) is of measure zero. 

Proof. The proof is in the Supplementary Notes. 

As an example of Sard’s Theorem, let c ∈ Rn and let f : U Rn be the map →
defined by f(x) = c. Note that Df(p) = 0 for all p ∈ U , so Cf = U . The set Cf = U 
is not a set of measure zero, but f(Cf ) = c} is a set of measure zero. {

As an exercise, you should prove the following claim: 

Claim. Sard’s Theorem is true for maps f : U Rn, where U is an open, connected →
subset of R. 

Proof Hint: Let f ∈ C∞(U) and define g = ∂f . The map g is continuous because 
∂x 

1(U). Let I = [a, b] ⊆ U , and define � = b − a. The continuity of g implies that f ∈ C
g is uniformly continuous on I. That is, for every � > 0, there exists a number N > 0 
such that g(x)− g(y) < � whenever x, y ∈ I and x − y < �/N .| | | |

Now, slice I into N equal subintervals. Let Ir, r = 1, . . . , k ≤ N be the subintervals 
intersecting Cf . Prove the following lemma: 

Lemma 5.7. If x, y ∈ Ir, then f(x)− f(y) < ��/N .| |

Proof Hint: Find c ∈ Ir such that f(x)−f(y) = (x−y)g(c). There exists c0 ∈ Ir ∩Cf 
if and only if g(c0) = 0. So, we can take 

g(c) = g(c)− g(c0) ≤ �. (5.13) | | | |

Then f(x)− f(y) ≤ ��/N .| |

From the lemma, we can conclude that 

f(Ir) ≡ Jr (5.14) 

is of length less than ��/N . Therefore, 

k
 
f(Cf ∩ I) ⊂ Jr (5.15) 

r=1 

is of length less than 
�� ��N 

N 
k ≤ 

N 
= ��. (5.16) 
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Letting �→ 0, we find that F (Cf ∩ I) is of measure zero. 
To conclude the proof, let Im,m = � 1, 2, 3, . . . , be an exhaustion of U by closed 

intervals I1 ⊂ I2 ⊂ I3 ⊂ · · · such that Im = U . We have shown that f(Cf ∩ Im) is � 
measure zero. So, f(Cf ) = f(Cf ∩ Im) implies that f(Cf ) is of measure zero. 
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