Lecture 20

We begin with a review of last lecture.
Consider a vector space V. A tensor $T \in \mathcal{L}^{k}$ is decomposable if $T=\ell_{1} \otimes \cdots \otimes$ $\ell_{k}, \ell_{i} \in \mathcal{L}^{1}=V^{*}$. A decomposable tensor T is redundant of $\ell_{i}=\ell_{i+1}$ for some i. We define

$$
\begin{equation*}
\mathcal{I}^{k}=\mathcal{I}^{k}(V)=\operatorname{Span}\{\text { redundant } k \text {-tensors }\} \tag{4.94}
\end{equation*}
$$

Because $\mathcal{I}^{k} \subseteq \mathcal{L}^{k}$, we can take the quotient space

$$
\begin{equation*}
\Lambda^{k}=\Lambda^{k}\left(V^{*}\right)=\mathcal{L}^{k} / \mathcal{I}^{k} \tag{4.95}
\end{equation*}
$$

defining the map

$$
\begin{equation*}
\pi: \mathcal{L}^{k} \rightarrow \Lambda^{k} \tag{4.96}
\end{equation*}
$$

We denote by $\mathcal{A}^{k}(V)$ the set of all alternating k-tensors. We repeat the main theorem from last lecture:
Theorem 4.27. The map π maps \mathcal{A}^{k} bijectively onto Λ^{k}. So, $\mathcal{A}^{k} \cong \Lambda^{k}$.
It is easier to understand the space \mathcal{A}^{k}, but many theorems are much simpler when using Λ^{k}. This ends the review of last lecture.

4.6 Wedge Product

Now, let $T_{1} \in \mathcal{I}^{k_{1}}$ and $T_{2} \in \mathcal{L}^{k_{2}}$. Then $T_{1} \otimes T_{2}$ and $T_{2} \otimes T_{1}$ are in \mathcal{I}^{k}, where $k=k_{1}+k_{2}$. The following is an example of the usefulness of Λ^{k}.

Let $\mu_{i} \in \Lambda^{k_{i}}, i=1,2$. So, $\mu_{i}=\pi\left(T_{i}\right)$ for some $T_{i} \in \mathcal{L}^{k_{i}}$. Define $k=k_{1}+k_{2}$, so $T_{1} \otimes T_{2} \in \mathcal{L}^{k}$. Then, we define

$$
\begin{equation*}
\pi\left(T_{1} \otimes T_{2}\right)=\mu_{1} \wedge \mu_{2} \in \Lambda^{k} \tag{4.97}
\end{equation*}
$$

Claim. The product $\mu_{i} \wedge \mu_{2}$ is well-defined.
Proof. Take any tensors $T_{i}^{\prime} \in \mathcal{L}^{k_{i}}$ with $\pi\left(T_{i}^{\prime}\right)=\mu_{i}$. We check that

$$
\begin{equation*}
\pi\left(T_{1}^{\prime} \otimes T_{2}^{\prime}\right)=\pi\left(T_{1} \otimes T_{2}\right) \tag{4.98}
\end{equation*}
$$

We can write

$$
\begin{align*}
& T_{1}^{\prime}=T_{1}+W_{1}, \text { where } W_{1} \in \mathcal{I}^{k_{1}} \tag{4.99}\\
& T_{2}^{\prime}=T_{2}+W_{2}, \text { where } W_{2} \in \mathcal{I}^{k_{2}} \tag{4.100}
\end{align*}
$$

Then,

$$
\begin{equation*}
T_{1}^{\prime} \otimes T_{2}^{\prime}=T_{1} \otimes T_{2}+\underbrace{W_{1} \otimes T_{2}+T_{1} \otimes W_{2}+W_{1} \otimes W_{2}}_{\in \mathcal{I}^{k}} \tag{4.101}
\end{equation*}
$$

so

$$
\begin{equation*}
\mu_{1} \wedge \mu_{2} \equiv \pi\left(T_{1}^{\prime} \otimes T_{2}^{\prime}\right)=\pi\left(T_{1} \otimes T_{2}\right) \tag{4.102}
\end{equation*}
$$

This product (\wedge) is called the wedge product. We can define higher order wedge products. Given $\mu_{i} \in \Lambda^{k_{i}}, i=1,2,3$, where $\mu=\pi\left(T_{i}\right)$, we define

$$
\begin{equation*}
\mu_{1} \wedge \mu_{2} \wedge \mu_{3}=\pi\left(T_{1} \otimes T_{2} \otimes T_{3}\right) \tag{4.103}
\end{equation*}
$$

We leave as an exercise to show the following claim.

Claim.

$$
\begin{align*}
\mu_{1} \wedge \mu_{2} \wedge \mu_{3} & =\left(\mu_{1} \wedge \mu_{2}\right) \wedge \mu_{3} \\
& =\mu_{1} \wedge\left(\mu_{2} \wedge \mu_{3}\right) \tag{4.104}
\end{align*}
$$

Proof Hint: This triple product law also holds for the tensor product.
We leave as an exercise to show that the two distributive laws hold:
Claim. If $k_{1}=k_{2}$, then

$$
\begin{equation*}
\left(\mu_{1}+\mu_{2}\right) \wedge \mu_{3}=\mu_{1} \wedge \mu_{3}+\mu_{2} \wedge \mu_{3} \tag{4.105}
\end{equation*}
$$

If $k_{2}=k_{3}$, then

$$
\begin{equation*}
\mu_{1} \wedge\left(\mu_{2}+\mu_{3}\right)=\mu_{1} \wedge \mu_{2}+\mu_{1} \wedge \mu_{3} \tag{4.106}
\end{equation*}
$$

Remember that $\mathcal{I}^{1}=\{0\}$, so $\Lambda^{1}=\Lambda^{1} / \mathcal{I}^{1}=\mathcal{L}^{1}=\mathcal{L}^{1}(V)=V^{*}$. That is, $\Lambda^{1}\left(V^{*}\right)=V^{*}$.

Definition 4.28. The element $\mu \in \Lambda^{k}$ is decomposable if it is of the form $\mu=$ $\ell_{1} \wedge \cdots \wedge \ell_{k}$, where each $\ell_{i} \in \Lambda^{1}=V^{*}$.

That means that $\mu=\pi\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)$ is the projection of a decomposable k-tensor.
Take a permutation $\sigma \in S_{k}$ and an element $\omega \in \Lambda^{k}$ such that $\omega=\pi(T)$, where $T \in \mathcal{L}^{k}$.

Definition 4.29.

$$
\begin{equation*}
\omega^{\sigma}=\pi\left(T^{\sigma}\right) \tag{4.107}
\end{equation*}
$$

We need to check that this definition does not depend on the choice of T.
Claim. Define $\omega^{\sigma}=\pi\left(T^{\sigma}\right)$. Then,

1. The above definition does not depend on the choice of T,
2. $\omega^{\sigma}=(-1)^{\sigma} \omega$.

Proof. 1. Last lecture we proved that for $T \in \mathcal{L}^{k}$,

$$
\begin{equation*}
T^{\sigma}=(-1)^{\sigma} T+W \tag{4.108}
\end{equation*}
$$

for some $W \in \mathcal{I}^{k}$. Hence, if $T \in \mathcal{I}^{k}$, then $T^{\sigma} \in \mathcal{I}^{k}$. If $\omega=\pi(T)=\pi\left(T^{\prime}\right)$, then $T^{\prime}-T \in \mathcal{I}^{k}$. Thus, $\left(T^{\prime}\right)^{\sigma}-T^{\sigma} \in \mathcal{I}^{k}$, so $\omega^{\sigma}=\pi\left(\left(T^{\prime}\right)^{\sigma}\right)=\pi\left(T^{\sigma}\right)$.
2.

$$
\begin{equation*}
T^{\sigma}=(-1)^{\sigma} T+W \tag{4.109}
\end{equation*}
$$

for some $W \in \mathcal{I}^{k}$, so

$$
\begin{equation*}
\pi\left(T^{\sigma}\right)=(-1)^{\sigma} \pi(T) \tag{4.110}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\omega^{\sigma}=(-1)^{\sigma} \omega \tag{4.111}
\end{equation*}
$$

Suppose ω is decomposable, so $\omega=\ell_{1} \wedge \cdots \wedge \ell_{k}, \ell_{i} \in V^{*}$. Then $\omega=\pi\left(\ell_{1} \wedge \cdots \wedge \ell_{k}\right)$, so

$$
\begin{align*}
\omega^{\sigma} & =\pi\left(\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)^{\sigma}\right) \\
& =\pi\left(\ell_{\sigma(1)} \otimes \cdots \otimes \ell_{\sigma(k)}\right) \tag{4.112}\\
& =\ell_{\sigma(1)} \wedge \cdots \wedge \ell_{\sigma(k)} .
\end{align*}
$$

Using the previous claim,

$$
\begin{equation*}
\ell_{\sigma(1)} \wedge \cdots \wedge \ell_{\sigma(k)}=(-1)^{\sigma} \ell_{1} \wedge \cdots \wedge \ell_{k} \tag{4.113}
\end{equation*}
$$

For example, if $k=2$, then $\sigma=\tau_{1,2}$. So, $\ell_{2} \wedge \ell_{1}=-\ell_{1} \wedge \ell_{2}$. In the case $k=3$, we find that

$$
\begin{align*}
\left(\ell_{1} \wedge \ell_{2}\right) \wedge \ell_{3} & =\ell_{1} \wedge\left(\ell_{2} \wedge \ell_{3}\right) \\
& =-\ell_{1} \wedge\left(\ell_{3} \wedge \ell_{2}\right)=-\left(\ell_{1} \wedge \ell_{3}\right) \wedge \ell_{2} \tag{4.114}\\
& =\ell_{3} \wedge\left(\ell_{1} \wedge \ell_{2}\right)
\end{align*}
$$

This motivates the following claim, the proof of which we leave as an exercise.
Claim. If $\mu \in \Lambda^{2}$ and $\ell \in \Lambda^{1}$, then

$$
\begin{equation*}
\mu \wedge \ell=\ell \wedge \mu \tag{4.115}
\end{equation*}
$$

Proof Hint: Write out μ as a linear combination of decomposable elements of Λ^{2}.
Now, suppose $k=4$. Moving ℓ_{3} and ℓ_{4} the same distance, we find that

$$
\begin{equation*}
\left(\ell_{1} \wedge \ell_{2}\right) \wedge\left(\ell_{3} \wedge \ell_{4}\right)=\left(\ell_{3} \wedge \ell_{4}\right) \wedge\left(\ell_{1} \wedge \ell_{2}\right) \tag{4.116}
\end{equation*}
$$

The proof of the following is an exercise.
Claim. If $\mu \in \Lambda^{2}$ and $\nu \in \Lambda^{2}$, then

$$
\begin{equation*}
\mu \wedge \nu=\nu \wedge \mu \tag{4.117}
\end{equation*}
$$

We generalize the above claims in the following:

Claim. Left $\mu \in \Lambda^{k}$ and $\nu \in \Lambda^{\ell}$. Then

$$
\begin{equation*}
\mu \wedge \nu=(-1)^{k \ell} \nu \wedge \mu \tag{4.118}
\end{equation*}
$$

Proof Hint: First assume k is even, and write out μ as a product of elements all of degree two. Second, assume that k is odd.

Now we try to find a basis for $\Lambda^{k}\left(V^{*}\right)$. We begin with

$$
\begin{align*}
& e_{1}, \ldots, e_{n} \text { a basis of } V \tag{4.119}\\
& e_{1}^{*}, \ldots, e_{n}^{*} \text { a basis of } V^{*} \tag{4.120}\\
& e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*}, I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{r} \leq n, \text { a basis of } \mathcal{L}^{k}, \tag{4.121}\\
& \psi_{I}=\operatorname{Alt}\left(e_{I}^{*}\right), \quad \text { 's strictly increasing, a basis of } \mathcal{A}^{k}(V) \tag{4.122}
\end{align*}
$$

We know that π maps \mathcal{A}^{k} bijectively onto Λ^{k}, so $\pi\left(\psi_{I}\right)$, where I is strictly increasing, are a basis of $\Lambda^{k}\left(V^{*}\right)$.

$$
\begin{equation*}
\psi_{I}=\operatorname{Alt} e_{I}^{*}=\sum(-1)^{\sigma}\left(e_{I}^{*}\right)^{\sigma} . \tag{4.123}
\end{equation*}
$$

So,

$$
\begin{align*}
\pi\left(\psi_{I}\right) & =\sum(-1)^{\sigma} \pi\left(\left(e_{I}^{*}\right)^{\sigma}\right) \\
& =\sum(-1)^{\sigma}(-1)^{\sigma} \pi\left(e_{I}^{*}\right) \tag{4.124}\\
& =k!\pi\left(e_{I}^{*}\right) \\
& \equiv k!\tilde{e}_{I}
\end{align*}
$$

Theorem 4.30. The elements of $\Lambda^{k}\left(V^{*}\right)$

$$
\begin{equation*}
\tilde{e}_{i_{1}}^{*} \wedge \cdots \wedge \tilde{e}_{i_{k}}^{*}, 1 \leq i_{1}<\ldots<i_{k} \leq n \tag{4.125}
\end{equation*}
$$

are a basis of $\Lambda^{k}\left(V^{*}\right)$.
Proof. The proof is above.
Let V, W be vector spaces, and let $A: V \rightarrow W$ be a linear map. We previously defined the pullback operator $A^{*}: \mathcal{L}^{k}(W) \rightarrow \mathcal{L}^{k}(V)$. Also, given $T_{i} \in \mathcal{L}^{k_{i}}(W), i=$ 1,2 , we showed that $A^{*}\left(T_{1} \otimes T_{2}\right)=A^{*} T_{1} \otimes A^{*} T_{2}$. So, if $T=\ell_{1} \otimes \cdots \otimes \ell_{k} \in \mathcal{L}_{k}(W)$ is decomposable, then

$$
\begin{equation*}
A^{*} T=A^{*} \ell_{1} \otimes \cdots \otimes A^{*} \ell_{k}, \quad \ell_{i} \in W^{*} \tag{4.126}
\end{equation*}
$$

If $\ell_{i}=\ell_{i+1}$, then $A^{*} \ell_{1}=A^{*} \ell_{i+1}$. This shows that if $\ell_{1} \otimes \cdots \otimes \ell_{k}$ is redundant, then $A^{*}\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)$ is also redundant. So,

$$
\begin{equation*}
A^{*} \mathcal{I}^{k}(W) \subseteq \mathcal{I}^{k}(V) \tag{4.127}
\end{equation*}
$$

Let $\mu \in \Lambda^{k}\left(W^{*}\right)$, so $\mu=\pi(T)$ for some $T \in \mathcal{L}^{k}(W)$. We can pullback to get $\pi\left(A^{*} T\right) \in \Lambda^{k}\left(V^{*}\right)$.

Definition 4.31. $A^{*} \mu=\pi\left(A^{*} T\right)$.
This definition makes sense. If $\mu=\pi(T)=\pi\left(T^{\prime}\right)$, then $T^{\prime}-T \in \mathcal{I}^{k}(W)$. So $A^{*} T^{\prime}-A^{*} T \in \mathcal{I}^{k}(V)$, which shows that $A^{*} \mu=\pi\left(A^{*} T^{\prime}\right)=\pi\left(A^{*} T\right)$.

We ask in the homework for you to show that the pullback operation is linear and that

$$
\begin{equation*}
A^{*}\left(\mu_{1} \wedge \mu_{2}\right)=A^{*} \mu_{1} \wedge A^{*} \mu_{2} \tag{4.128}
\end{equation*}
$$

