Lecture 19

We begin with a review of tensors and alternating tensors.
We defined $\mathcal{L}^{k}(V)$ to be the set of k-linear maps $T: V^{k} \rightarrow \mathbb{R}$. We defined e_{1}, \ldots, e_{n} to be a basis of V and $e_{1}^{*}, \ldots, e_{n}^{*}$ to be a basis of V^{*}. We also defined $\left\{e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*}\right\}$ to be a basis of $\mathcal{L}^{k}(V)$, where $I=\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{r} \leq n$ is a multi-index. This showed that $\operatorname{dim} \mathcal{L}^{k}=n^{k}$.

We defined the permutation operation on a tensor. For $\sigma \in S_{n}$ and $T \in \mathcal{L}^{k}$, we defined $T^{\sigma} \in \mathcal{L}^{k}$ by $T^{\sigma}\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(k)}\right)$. Then we defined that T is alternating if $T^{\sigma}=(-1)^{\sigma} T$. We defined $\mathcal{A}^{k}=\mathcal{A}^{k}(V)$ to be the space of all alternating k-tensors.

We defined the alternating operator Alt : $\mathcal{L}^{k} \rightarrow \mathcal{A}^{k}$ by $\operatorname{Alt}(T)=\sum(-1)^{\sigma} T^{\sigma}$, and we defined $\psi_{I}=\operatorname{Alt}\left(e_{I}^{*}\right)$, where $I=\left(i_{1}, \ldots, i_{k}\right)$ is a strictly increasing multi-index. We proved the following theorem:

Theorem 4.24. The ψ_{I} 's (where I is strictly increasing) are a basis for $\mathcal{A}^{k}(V)$.
Corollary 6. If $0 \leq k \leq n$, then

$$
\begin{equation*}
\operatorname{dim} \mathcal{A}^{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!} . \tag{4.69}
\end{equation*}
$$

Corollary 7. If $k>n$, then $\mathcal{A}^{k}=\{0\}$.
We now ask what is the kernel of Alt? That is, for which $T \in \mathcal{L}^{k}$ is $\operatorname{Alt}(T)=0$?
Let $T \in \mathcal{L}^{k}$ be a decomposable k-tensor, $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$, where each $\ell_{i} \in V^{*}$.
Definition 4.25. The k-tensor T is redundant if $\ell_{i}=\ell_{i+1}$ for some $1 \leq i \leq k-1$.
We define

$$
\begin{equation*}
\mathcal{I}^{k} \equiv \operatorname{Span}\{\text { redundant } k \text {-tensors }\} \tag{4.70}
\end{equation*}
$$

Claim. If $T \in \mathcal{I}^{k}$, then $\operatorname{Alt}(T)=0$.
Proof. It suffices to prove this for $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$, where $\ell_{1}=\ell_{i+1}$ (T is redundant). Let $\tau=\tau_{i, i+1} \in S_{k}$. So, $T^{\tau}=T$. But

$$
\begin{align*}
\operatorname{Alt}\left(T^{\tau}\right) & =(-1)^{\tau} \operatorname{Alt}(T) \\
& =-\operatorname{Alt}(T), \tag{4.71}
\end{align*}
$$

so $\operatorname{Alt}(T)=0$.
Claim. Suppose that $T \in \mathcal{I}^{k}$ and $T^{\prime} \in \mathcal{L}^{m}$. Then $T^{\prime} \otimes T \in \mathcal{I}^{k+n}$ and $T \otimes T^{\prime} \in \mathcal{I}^{k+m}$.

Proof. We can assume that T and T^{\prime} are both decomposable tensors.

$$
\begin{align*}
T & =\ell_{1} \otimes \cdots \otimes \ell_{k}, \quad \ell_{i}=\ell_{i+1}, \tag{4.72}\\
T^{\prime} & =\ell_{1}^{\prime} \otimes \cdots \otimes \ell_{m}^{\prime}, \tag{4.73}\\
T \otimes T^{\prime} & =\ell_{1} \otimes \cdots \otimes \underbrace{\ell_{i} \otimes \ell_{i+1}}_{\text {a redundancy }} \otimes \cdots \otimes \ell_{k} \otimes \ell_{1}^{\prime} \otimes \cdots \otimes \ell_{m}^{\prime} \tag{4.74}\\
& \in \mathcal{I}^{k+m} . \tag{4.75}
\end{align*}
$$

A similar argument holds for $T^{\prime} \otimes T$.
Claim. For each $T \in \mathcal{L}^{k}$ and $\sigma \in S_{k}$, there exists some $w \in \mathcal{I}^{k}$ such that

$$
\begin{equation*}
T=(-1)^{\sigma} T^{\sigma}+W \tag{4.76}
\end{equation*}
$$

Proof. In proving this we can assume that T is decomposable. That is, $T=\ell_{1} \otimes \cdots \otimes$ ℓ_{k}.

We first check the case $k=2$. Let $T=\ell_{1} \otimes \ell_{2}$. The only (non-identity) permutation is $\sigma=\tau_{1,2}$. In this case, $T=(-1)^{\sigma} T^{\sigma}+W$ becomes $W=T+T^{\sigma}$, so

$$
\begin{align*}
W & =T+T^{\sigma} \\
& =\ell_{1} \otimes \ell_{2}+\ell_{2} \otimes \ell_{1} \\
& =\left(\ell_{1}+\ell_{2}\right) \otimes\left(\ell_{1}+\ell_{2}\right)-\ell_{1} \otimes \ell_{1}-\ell_{2} \otimes \ell_{2} \tag{4.77}\\
& \in \mathcal{I}^{2}
\end{align*}
$$

We now check the case k is arbitrary. Let $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$ and $\sigma=\tau_{1} \tau_{2} \ldots \tau_{r} \in S_{k}$, where the τ_{i} 's are elementary transpositions. We will prove that $W \in \mathcal{I}^{k}$ by induction on r.

- Case $r=1$: Then $\sigma=\tau_{i, i+1}$, and

$$
\begin{align*}
W & =T+T^{\sigma} \\
& =\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)+\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)^{\sigma} \\
& =\ell_{1} \otimes \cdots \otimes \ell_{i-1} \otimes\left(\ell_{i} \otimes \ell_{i+1}+\ell_{i+1} \otimes \ell_{i}\right) \otimes \ell_{i+2} \otimes \cdots \otimes \ell_{k} \tag{4.78}\\
& \in \mathcal{I}^{k}
\end{align*}
$$

because $\left(\ell_{i} \otimes \ell_{i+1}+\ell_{i+1} \otimes \ell_{i}\right) \in \mathcal{I}^{k}$.

- Induction step $((r-1) \Longrightarrow r)$: Let $\beta=\tau_{2} \ldots \tau_{r}$, and let $\tau=\tau_{1}$ so that $\sigma=\tau_{1} \tau_{2} \ldots \tau_{r}=\tau \beta$. Then

$$
\begin{equation*}
T^{\sigma}=\left(T^{\beta}\right)^{\tau} \tag{4.79}
\end{equation*}
$$

By induction, we know that

$$
\begin{equation*}
T^{\beta}=(-1)^{\beta} T+W \tag{4.80}
\end{equation*}
$$

for some $W \in \mathcal{I}^{k}$. So,

$$
\begin{align*}
T^{\sigma} & =(-1)^{\beta} T^{\tau}+W^{\tau} \\
& =(-1)^{\beta}(-1)^{\tau} T+W^{\tau} \tag{4.81}\\
& =(-1)^{\sigma} T+W^{\tau},
\end{align*}
$$

where $W^{\tau}=(-1)^{\tau} W+W^{\prime} \in \mathcal{I}^{k}$.

Corollary 8. For every $T \in \mathcal{L}^{k}$,

$$
\begin{equation*}
\operatorname{Alt}(T)=k!T+W \tag{4.82}
\end{equation*}
$$

for some $W \in \mathcal{I}^{k}$.
Proof.

$$
\begin{equation*}
\operatorname{Alt}(T)=\sum_{\sigma}(-1)^{\sigma} T^{\sigma} \tag{4.83}
\end{equation*}
$$

but we know that $T^{\sigma}=(-1)^{\sigma} T+W_{\sigma}$, for some $W_{\sigma} \in \mathcal{I}^{k}$, so

$$
\begin{align*}
\operatorname{Alt}(T) & =\sum_{\sigma}\left(T+(-1)^{\sigma} W_{\sigma}\right) \tag{4.84}\\
& =k!T+W,
\end{align*}
$$

where $W=\sum_{\sigma}(-1)^{\sigma} W_{\sigma} \in \mathcal{I}^{k}$.
Theorem 4.26. Every $T \in \mathcal{L}^{k}$ can be written uniquely as a sum

$$
\begin{equation*}
T=T_{1}+T_{2}, \tag{4.85}
\end{equation*}
$$

where $T_{1} \in \mathcal{A}^{k}$ and $T_{2} \in \mathcal{I}^{k}$.
Proof. We know that $\operatorname{Alt}(T)=k!T+W$, for some $W \in \mathcal{I}^{k}$. Solving for T, we get

$$
\begin{equation*}
T=\underbrace{\frac{1}{k!} \operatorname{Alt}(T)}_{T_{1}}-\underbrace{\frac{1}{k!} W}_{T_{2}} . \tag{4.86}
\end{equation*}
$$

We check uniqueness:

$$
\begin{equation*}
\operatorname{Alt}(T)=\underbrace{\operatorname{Alt}\left(T_{1}\right)}_{k!T_{1}}+\underbrace{\operatorname{Alt}\left(T_{2}\right)}_{0}, \tag{4.87}
\end{equation*}
$$

so T_{1} is unique, which implies that T_{2} is also unique.
Claim.

$$
\begin{equation*}
\mathcal{I}^{k}=\text { ker Alt } \tag{4.88}
\end{equation*}
$$

Proof. If Alt $T=0$, then

$$
\begin{equation*}
T=-\frac{1}{k!} W, \quad W \in \mathcal{I}^{k} \tag{4.89}
\end{equation*}
$$

so $T \in \mathcal{I}^{k}$.
The space \mathcal{I}^{k} is a subspace of \mathcal{L}^{k}, so we can form the quotient space

$$
\begin{equation*}
\Lambda^{k}\left(V^{*}\right) \equiv \mathcal{L}^{k} / \mathcal{I}^{k} \tag{4.90}
\end{equation*}
$$

What's up with this notation $\Lambda^{k}\left(V^{*}\right)$? We motivate this notation with the case $k=1$. There are no redundant 1 -tensors, so $\mathcal{I}^{1}=\{0\}$, and we already know that $\mathcal{L}^{1}=V^{*}$. So

$$
\begin{equation*}
\Lambda^{1}\left(V^{*}\right)=V^{*} / \mathcal{I}^{1}=\mathcal{L}^{1}=V^{*} \tag{4.91}
\end{equation*}
$$

Define the map $\pi: \mathcal{L}^{k} \rightarrow \mathcal{L}^{k} / \mathcal{I}^{k}$. The map π is onto, and $\operatorname{ker} \pi=\mathcal{I}^{k}$.
Claim. The map π maps \mathcal{A}^{k} bijectively onto $\Lambda^{k}\left(V^{*}\right)$.
Proof. Every element of Λ^{k} is of the form $\pi(T)$ for some $T \in \mathcal{L}^{k}$. We can write $T=T_{1}+T_{2}$, where $T_{1} \in \mathcal{A}^{k}$ and $T_{2} \in \mathcal{I}^{k}$. So,

$$
\begin{align*}
\pi(T) & =\pi\left(T_{1}\right)+\pi\left(T_{2}\right) \\
& =\pi\left(T_{1}\right)+0 \tag{4.92}\\
& =\pi\left(T_{1}\right)
\end{align*}
$$

So, π maps \mathcal{A}^{k} onto Λ^{k}. Now we show that π is one-to-one. If $T \in \mathcal{A}^{k}$ and $\pi(T)=0$, then $T \in \mathcal{I}^{k}$ as well. We know that $\mathcal{A}^{k} \cap \mathcal{I}^{k}=\{0\}$, so π is bijective.

We have shown that

$$
\begin{equation*}
\mathcal{A}^{k}(V) \cong \Lambda^{k}\left(V^{*}\right) \tag{4.93}
\end{equation*}
$$

The space $\Lambda^{k}\left(V^{*}\right)$ is not mentioned in Munkres, but sometimes it is useful to look at the same space in two different ways.

