Lecture 19

We begin with a review of tensors and alternating tensors.

We defined $\mathcal{L}^k(V)$ to be the set of k-linear maps $T: V^k \to \mathbb{R}$. We defined e_1, \ldots, e_n to be a basis of V and e_1^*, \ldots, e_n^* to be a basis of V^* . We also defined $\{e_I^* = e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*\}$ to be a basis of $\mathcal{L}^k(V)$, where $I = (i_1, \ldots, i_k), 1 \leq i_r \leq n$ is a multi-index. This showed that dim $\mathcal{L}^k = n^k$.

We defined the permutation operation on a tensor. For $\sigma \in S_n$ and $T \in \mathcal{L}^k$, we defined $T^{\sigma} \in \mathcal{L}^k$ by $T^{\sigma}(v_1, \ldots, v_k) = T(v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(k)})$. Then we defined that T is alternating if $T^{\sigma} = (-1)^{\sigma}T$. We defined $\mathcal{A}^k = \mathcal{A}^k(V)$ to be the space of all alternating k-tensors.

We defined the alternating operator Alt : $\mathcal{L}^k \to \mathcal{A}^k$ by Alt $(T) = \sum (-1)^{\sigma} T^{\sigma}$, and we defined $\psi_I = \text{Alt}(e_I^*)$, where $I = (i_1, \ldots, i_k)$ is a strictly increasing multi-index. We proved the following theorem:

Theorem 4.24. The ψ_I 's (where I is strictly increasing) are a basis for $\mathcal{A}^k(V)$.

Corollary 6. If $0 \le k \le n$, then

$$\dim \mathcal{A}^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$
(4.69)

Corollary 7. If k > n, then $\mathcal{A}^k = \{0\}$.

We now ask what is the kernel of Alt? That is, for which $T \in \mathcal{L}^k$ is Alt (T) = 0? Let $T \in \mathcal{L}^k$ be a decomposable k-tensor, $T = \ell_1 \otimes \cdots \otimes \ell_k$, where each $\ell_i \in V^*$.

Definition 4.25. The k-tensor T is redundant if $\ell_i = \ell_{i+1}$ for some $1 \le i \le k-1$.

We define

$$\mathcal{I}^{k} \equiv \text{Span} \{ \text{ redundant } k \text{-tensors } \}.$$

$$(4.70)$$

Claim. If $T \in \mathcal{I}^k$, then Alt (T) = 0.

Proof. It suffices to prove this for $T = \ell_1 \otimes \cdots \otimes \ell_k$, where $\ell_1 = \ell_{i+1}$ (T is redundant). Let $\tau = \tau_{i,i+1} \in S_k$. So, $T^{\tau} = T$. But

$$\operatorname{Alt} (T^{\tau}) = (-1)^{\tau} \operatorname{Alt} (T)$$

= - Alt (T), (4.71)

so Alt (T) = 0.

Claim. Suppose that $T \in \mathcal{I}^k$ and $T' \in \mathcal{L}^m$. Then $T' \otimes T \in \mathcal{I}^{k+n}$ and $T \otimes T' \in \mathcal{I}^{k+m}$.

Proof. We can assume that T and T' are both decomposable tensors.

$$T = \ell_1 \otimes \dots \otimes \ell_k, \ \ \ell_i = \ell_{i+1}, \tag{4.72}$$

$$T' = \ell'_1 \otimes \dots \otimes \ell'_m, \tag{4.73}$$

$$T \otimes T' = \ell_1 \otimes \dots \otimes \underbrace{\ell_i \otimes \ell_{i+1}}_{\text{a redundancy}} \otimes \dots \otimes \ell_k \otimes \ell'_1 \otimes \dots \otimes \ell'_m \tag{4.74}$$

$$\in \mathcal{I}^{k+m}.$$
(4.75)

A similar argument holds for $T' \otimes T$.

Claim. For each $T \in \mathcal{L}^k$ and $\sigma \in S_k$, there exists some $w \in \mathcal{I}^k$ such that

$$T = (-1)^{\sigma} T^{\sigma} + W. \tag{4.76}$$

Proof. In proving this we can assume that T is decomposable. That is, $T = \ell_1 \otimes \cdots \otimes \ell_k$.

We first check the case k = 2. Let $T = \ell_1 \otimes \ell_2$. The only (non-identity) permutation is $\sigma = \tau_{1,2}$. In this case, $T = (-1)^{\sigma} T^{\sigma} + W$ becomes $W = T + T^{\sigma}$, so

$$W = T + T^{\sigma}$$

= $\ell_1 \otimes \ell_2 + \ell_2 \otimes \ell_1$
= $(\ell_1 + \ell_2) \otimes (\ell_1 + \ell_2) - \ell_1 \otimes \ell_1 - \ell_2 \otimes \ell_2$
 $\in \mathcal{I}^2.$ (4.77)

We now check the case k is arbitrary. Let $T = \ell_1 \otimes \cdots \otimes \ell_k$ and $\sigma = \tau_1 \tau_2 \ldots \tau_r \in S_k$, where the τ_i 's are elementary transpositions. We will prove that $W \in \mathcal{I}^k$ by induction on r.

• Case r = 1: Then $\sigma = \tau_{i,i+1}$, and

$$W = T + T^{\sigma}$$

= $(\ell_1 \otimes \cdots \otimes \ell_k) + (\ell_1 \otimes \cdots \otimes \ell_k)^{\sigma}$
= $\ell_1 \otimes \cdots \otimes \ell_{i-1} \otimes (\ell_i \otimes \ell_{i+1} + \ell_{i+1} \otimes \ell_i) \otimes \ell_{i+2} \otimes \cdots \otimes \ell_k$
 $\in \mathcal{I}^k,$ (4.78)

because $(\ell_i \otimes \ell_{i+1} + \ell_{i+1} \otimes \ell_i) \in \mathcal{I}^k$.

• Induction step $((r-1) \implies r)$: Let $\beta = \tau_2 \dots \tau_r$, and let $\tau = \tau_1$ so that $\sigma = \tau_1 \tau_2 \dots \tau_r = \tau \beta$. Then

$$T^{\sigma} = (T^{\beta})^{\tau}. \tag{4.79}$$

By induction, we know that

$$T^{\beta} = (-1)^{\beta}T + W, \tag{4.80}$$

for some $W \in \mathcal{I}^k$. So,

$$T^{\sigma} = (-1)^{\beta} T^{\tau} + W^{\tau}$$

= $(-1)^{\beta} (-1)^{\tau} T + W^{\tau}$
= $(-1)^{\sigma} T + W^{\tau}$, (4.81)

where $W^{\tau} = (-1)^{\tau}W + W' \in \mathcal{I}^k$.

Corollary 8. For every $T \in \mathcal{L}^k$,

$$\operatorname{Alt}\left(T\right) = k!T + W \tag{4.82}$$

for some $W \in \mathcal{I}^k$.

Proof.

$$\operatorname{Alt}\left(T\right) = \sum_{\sigma} (-1)^{\sigma} T^{\sigma}, \qquad (4.83)$$

but we know that $T^{\sigma} = (-1)^{\sigma}T + W_{\sigma}$, for some $W_{\sigma} \in \mathcal{I}^k$, so

Alt
$$(T) = \sum_{\sigma} (T + (-1)^{\sigma} W_{\sigma})$$

= $k!T + W$, (4.84)

where $W = \sum_{\sigma} (-1)^{\sigma} W_{\sigma} \in \mathcal{I}^k$.

Theorem 4.26. Every $T \in \mathcal{L}^k$ can be written uniquely as a sum

$$T = T_1 + T_2, (4.85)$$

where $T_1 \in \mathcal{A}^k$ and $T_2 \in \mathcal{I}^k$.

Proof. We know that Alt (T) = k!T + W, for some $W \in \mathcal{I}^k$. Solving for T, we get

$$T = \underbrace{\frac{1}{k!} \operatorname{Alt}(T)}_{T_1} - \underbrace{\frac{1}{k!}}_{T_2} W.$$
(4.86)

We check uniqueness:

$$\operatorname{Alt}(T) = \underbrace{\operatorname{Alt}(T_1)}_{k!T_1} + \underbrace{\operatorname{Alt}(T_2)}_{0}, \qquad (4.87)$$

so T_1 is unique, which implies that T_2 is also unique.

Claim.

$$\mathcal{I}^k = \ker \operatorname{Alt} \,. \tag{4.88}$$

Proof. If Alt T = 0, then

$$T = -\frac{1}{k!}W, \quad W \in \mathcal{I}^k, \tag{4.89}$$

so $T \in \mathcal{I}^k$.

The space \mathcal{I}^k is a subspace of \mathcal{L}^k , so we can form the quotient space

$$\Lambda^k(V^*) \equiv \mathcal{L}^k/\mathcal{I}^k. \tag{4.90}$$

What's up with this notation $\Lambda^k(V^*)$? We motivate this notation with the case k = 1. There are no redundant 1-tensors, so $\mathcal{I}^1 = \{0\}$, and we already know that $\mathcal{L}^1 = V^*$. So

$$\Lambda^{1}(V^{*}) = V^{*}/\mathcal{I}^{1} = \mathcal{L}^{1} = V^{*}.$$
(4.91)

Define the map $\pi : \mathcal{L}^k \to \mathcal{L}^k / \mathcal{I}^k$. The map π is onto, and ker $\pi = \mathcal{I}^k$.

Claim. The map π maps \mathcal{A}^k bijectively onto $\Lambda^k(V^*)$.

Proof. Every element of Λ^k is of the form $\pi(T)$ for some $T \in \mathcal{L}^k$. We can write $T = T_1 + T_2$, where $T_1 \in \mathcal{A}^k$ and $T_2 \in \mathcal{I}^k$. So,

$$\pi(T) = \pi(T_1) + \pi(T_2) = \pi(T_1) + 0 = \pi(T_1).$$
(4.92)

So, π maps \mathcal{A}^k onto Λ^k . Now we show that π is one-to-one. If $T \in \mathcal{A}^k$ and $\pi(T) = 0$, then $T \in \mathcal{I}^k$ as well. We know that $\mathcal{A}^k \cap \mathcal{I}^k = \{0\}$, so π is bijective. \Box

We have shown that

$$\mathcal{A}^k(V) \cong \Lambda^k(V^*). \tag{4.93}$$

The space $\Lambda^k(V^*)$ is not mentioned in Munkres, but sometimes it is useful to look at the same space in two different ways.