Lecture 17

Today we begin studying the material that is also found in the Multi-linear Algebra Notes. We begin with the theory of tensors.

4.3 Tensors

Let V be a n-dimensional vector space. We use the following notation.
Notation.

$$
\begin{equation*}
V^{k}=\underbrace{V \times \cdots \times V}_{k \text { times }} . \tag{4.14}
\end{equation*}
$$

For example,

$$
\begin{align*}
V^{2} & =V \times V \tag{4.15}\\
V^{3} & =V \times V \times V . \tag{4.16}
\end{align*}
$$

Let $T: V^{k} \rightarrow \mathbb{R}$ be a map.
Definition 4.1. The map T is linear in its ith factor if for every sequence $v_{j} \in V, 1 \leq$ $j \leq n, j \neq i$, the function mapping $v \in V$ to $T\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{k}\right)$ is linear in v.

Definition 4.2. The map T is k-linear (or is a k-tensor) if it is linear in all k factors.
Let T_{1}, T_{2} be k-tensors, and let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Then $\lambda_{1} T_{1}+\lambda_{2} T_{2}$ is a k-tensor (it is linear in all of its factors).

So, the set of all k-tensors is a vector space, denoted by $\mathcal{L}^{k}(V)$, which we sometimes simply denote by \mathcal{L}^{k}.

Consider the special case $k=1$. The the set $\mathcal{L}^{1}(V)$ is the set of all linear maps $\ell: V \rightarrow \mathbb{R}$. In other words,

$$
\begin{equation*}
\mathcal{L}^{1}(V)=V^{*} \tag{4.17}
\end{equation*}
$$

We use the convention that

$$
\begin{equation*}
\mathcal{L}^{0}(V)=\mathbb{R} \tag{4.18}
\end{equation*}
$$

Definition 4.3. Let $T_{i} \in \mathcal{L}^{k_{i}}, i=1,2$, and define $k=k_{1}+k_{2}$. We define the tensor product of T_{1} and T_{2} to be the tensor $T_{1} \otimes T_{2}: V^{k} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
T_{1} \otimes T_{2}\left(v_{1}, \ldots, v_{k}\right)=T_{1}\left(v_{1}, \ldots, v_{k_{1}}\right) T_{2}\left(v_{k_{1}+1}, \ldots, v_{k}\right) \tag{4.19}
\end{equation*}
$$

We can conclude that $T_{1} \otimes T_{2} \in \mathcal{L}^{k}$.
We can define more complicated tensor products. For example, let $T_{i} \in \mathcal{L}^{k_{i}}, i=$ $1,2,3$, and define $k=k_{1}+k_{2}+k_{3}$. Then we have the tensor product

$$
\begin{align*}
& T_{1} \otimes T_{2} \otimes T_{3}\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=T_{1}\left(v_{i}, \ldots, v_{k_{1}}\right) T_{2}\left(v_{k_{1}+1}, \ldots, v_{k_{1}+k_{2}}\right) T_{3}\left(v_{k_{1}+k_{2}+1}, \ldots, v_{k}\right) \tag{4.20}
\end{align*}
$$

Then $T_{1} \otimes T_{2} \otimes T_{3} \in \mathcal{L}^{k}$. Note that we could have simply defined

$$
\begin{align*}
T_{1} \otimes T_{2} \otimes T_{3} & =\left(T_{1} \otimes T_{2}\right) \otimes T_{3} \tag{4.21}\\
& =T_{1} \otimes\left(T_{2} \otimes T_{3}\right),
\end{align*}
$$

where the second equality is the associative law for tensors. There are other laws, which we list here.

- Associative Law: $\left(T_{1} \otimes T_{2}\right) \otimes T_{3}=T_{1} \otimes\left(T_{2} \otimes T_{3}\right)$.
- Right and Left Distributive Laws: Suppose $T_{i} \in \mathcal{L}^{k_{i}}, i=1,2,3$, and assume that $k_{1}=k_{2}$. Then
- Left: $\left(T_{1}+T_{2}\right) \otimes T_{3}=T_{1} \otimes T_{3}+T_{2} \otimes T_{3}$.
- Right: $T_{3} \otimes\left(T_{1}+T_{2}\right)=T_{3} \otimes T_{1}+T_{3} \otimes T_{2}$.
- Let λ be a scalar. Then

$$
\begin{equation*}
\lambda\left(T_{1} \otimes T_{2}\right)=\left(\lambda T_{1}\right) \otimes T_{2}=T_{1} \otimes\left(\lambda T_{2}\right) \tag{4.22}
\end{equation*}
$$

Now we look at an important class of k-tensors. Remember that $\mathcal{L}^{1}(V)=V^{*}$, and take any 1 -tensors $\ell_{i} \in V^{*}, i=1, \ldots, k$.

Definition 4.4. The tensor $T=\ell_{1} \otimes \cdots \otimes \ell_{k}$ is a decomposable k-tensor.
By definition, $T\left(v_{1}, \ldots, v_{k}\right)=\ell_{1}\left(v_{1}\right) \ldots \ell_{k}\left(v_{k}\right)$. That is, $\ell_{1} \otimes \cdots \otimes \ell_{k}\left(v_{1}, \ldots, v_{k}\right)=$ $\ell_{1}\left(v_{1}\right) \ldots \ell_{k}\left(v_{k}\right)$.

Now let us go back to considering $\mathcal{L}^{k}=\mathcal{L}^{k}(V)$.

Theorem 4.5.

$$
\begin{equation*}
\operatorname{dim} \mathcal{L}^{k}=n^{k} \tag{4.23}
\end{equation*}
$$

Note that for $k=1$, this shows that $\mathcal{L}^{1}(V)=V^{*}$ has dimension n.
Proof. Fix a basis e_{1}, \ldots, e_{n} of V. This defines a dual basis $e_{i}^{*}, \ldots, e_{n}^{*}$ of $V^{*}, e_{i}^{*}: V \rightarrow$ \mathbb{R} defined by

$$
e_{i}^{*}\left(e_{j}\right)= \begin{cases}1 & \text { if } i=j \tag{4.24}\\ 0 & \text { if } i \neq j\end{cases}
$$

Definition 4.6. A multi-index I of length k is a set of integers $\left(i_{1}, \ldots, i_{k}\right), 1 \leq i_{r} \leq n$. We define

$$
\begin{equation*}
e_{I}^{*}=e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{k}}^{*} \in \mathcal{L}^{k} \tag{4.25}
\end{equation*}
$$

Let $J=\left(j_{1}, \ldots, j_{k}\right)$ be a multi-index of length k. Then

$$
e_{I}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=e_{i_{1}}^{*}\left(e_{j_{1}}\right) \ldots e_{i_{k}}^{*}\left(e_{j_{k}}\right)= \begin{cases}1 & \text { if } I=J \tag{4.26}\\ 0 & \text { if } I \neq J\end{cases}
$$

Claim. The k-tensors e_{I}^{*} are a basis of \mathcal{L}^{k}.
Proof. To prove the claim, we use the following lemma.
Lemma 4.7. Let T be a k-tensor. Suppose that $T\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)=0$ for all multiindices I. Then $T=0$.

Proof. Define a $(k-1)$-tensor $T_{i}: V^{k-1} \rightarrow \mathbb{R}$ by setting

$$
\begin{equation*}
T_{i}\left(v_{1}, \ldots, v_{k-1}\right)=T\left(v_{1}, \ldots, v_{k-1}, e_{j}\right), \tag{4.27}
\end{equation*}
$$

and let $v_{k}=\sum a_{i} e_{i}$. By linearity, $T\left(v_{1}, \ldots, v_{k}\right)=\sum a_{i} T_{i}\left(v_{1}, \ldots, v_{k-1}\right)$. So, if the lemma is true for the T_{i} 's, then it is true for T by an induction argument (we leave this to the student to prove).

With this lemma we can prove the claim.
First we show that the e_{I}^{*} 's are linearly independent. Suppose that

$$
\begin{equation*}
0=T=\sum c_{I} e_{I}^{*} . \tag{4.28}
\end{equation*}
$$

For any multi-index J of length k,

$$
\begin{align*}
0 & =T\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \\
& =\sum c_{I} e_{I}^{*}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) \tag{4.29}\\
& =c_{J} \\
& =0
\end{align*}
$$

So the e_{I}^{*} 's are linearly independent.
Now we show that the e_{I}^{*} 's span \mathcal{L}^{k}. Let $T \in \mathcal{L}^{k}$. For every I let $T_{I}=$ $T\left(e_{i_{1}}, \ldots, e_{i_{l}}\right)$, and let $T^{\prime}=\sum T_{I} e_{I}^{*}$. One can check that $\left(T-T^{\prime}\right)\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=0$ for all multi-indices J. Then the lemma tells us that $T=T^{\prime}$, so the e_{I}^{*} 's span \mathcal{L}^{k}, which proves our claim.

Since the $e_{I}^{* \prime}$'s are a basis of \mathcal{L}^{k}, we see that

$$
\begin{equation*}
\operatorname{dim} \mathcal{L}^{k}=n^{k} \tag{4.30}
\end{equation*}
$$

which proves our theorem.

4.4 Pullback Operators

Let V, W be vector spacers, and let $A: V \rightarrow W$ be a linear map. Let $T \in \mathcal{L}^{k}(W)$, and define a new map $A^{*} T \in \mathcal{L}^{k}(V)$ (called the "pullback" tensor) by

$$
\begin{equation*}
A^{*} T\left(v_{1}, \ldots, v_{k}\right)=T\left(A v_{1}, \ldots, A v_{k}\right) \tag{4.31}
\end{equation*}
$$

You should prove the following claims as an exercise:
Claim. The map $A^{*}: \mathcal{L}^{k}(W) \rightarrow \mathcal{L}^{k}(V)$ is a linear map.
Claim. Let $T_{i} \in \mathcal{L}^{k_{i}}(W), i=1,2$. Then

$$
\begin{equation*}
A^{*}\left(T_{1} \otimes T_{2}\right)=A^{*} T_{1} \otimes A^{*} T_{2} \tag{4.32}
\end{equation*}
$$

Now, let $A: V \rightarrow W$ and $B: W \rightarrow U$ be maps, where U is a vector space. Given $T \in \mathcal{L}^{k}(U)$, we can "pullback" to W by $B^{*} T$, and then we can "pullback" to V by $A^{*}\left(B^{*} T\right)=(B \circ A)^{*} T$.

4.5 Alternating Tensors

In this course we will be restricting ourselves to alternating tensors.
Definition 4.8. A permutation of order k is a bijective map

$$
\begin{equation*}
\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\} . \tag{4.33}
\end{equation*}
$$

The map is a bijection, so σ^{-1} exists.
Given two permutations σ_{1}, σ_{2}, we can construct the composite permutation

$$
\begin{equation*}
\sigma_{1} \circ \sigma_{2}(i)=\sigma_{1}\left(\sigma_{2}(i)\right) \tag{4.34}
\end{equation*}
$$

We define

$$
\begin{equation*}
S_{k} \equiv \text { The set of all permutations of }\{1, \ldots, k\} \tag{4.35}
\end{equation*}
$$

There are some special permutations. Fix $1 \leq i<j \leq k$. Let τ be the permutation such that

$$
\begin{align*}
\tau(i) & =j \tag{4.36}\\
\tau(j) & =i \tag{4.37}\\
\tau(\ell) & =\ell, \ell \neq i, j \tag{4.38}
\end{align*}
$$

The permutation τ is called a transposition.
Definition 4.9. The permutation τ is an elementary transposition if $j=i+1$.
We state without proof two very useful theorems.

Theorem 4.10. Every permutation can be written as a product $\sigma=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{m}$, where each τ_{i} is an elementary transposition.

Theorem 4.11. Every permutation σ can be written either as a product of an even number of elementary transpositions or as a product of an odd number of elementary transpositions, but not both.

Because of the second theorem, we can define an important invariant of a permutation: the sign of the permutation.

Definition 4.12. If $\sigma=\tau_{1} \circ \cdots \circ \tau_{m}$, where the τ_{i} 's are elementary transpositions, then the sign of σ is

$$
\begin{equation*}
\text { sign of } \sigma=(-1)^{\sigma}=(-1)^{m} \tag{4.39}
\end{equation*}
$$

Note that if $\sigma=\sigma_{1} \circ \sigma_{2}$, then $(-1)^{\sigma}=(-1)^{\sigma_{1}}(-1)^{\sigma_{2}}$. We can see this by letting $\sigma_{1}=\tau_{1} \circ \cdots \circ \tau_{m_{1}}$, and $\sigma_{2}=\tau_{1}^{\prime} \circ \cdots \circ \tau_{m_{2}}^{\prime}$, and noting that $\sigma_{1} \circ \sigma_{2}=\tau_{1} \circ \cdots \circ \tau_{m_{1}} \circ$ $\tau_{1}^{\prime} \circ \cdots \circ \tau_{m_{2}}^{\prime}$.

