Lecture 15

We restate the partition of unity theorem from last time. Let $\{U_{\alpha} : \alpha \in I\}$ be a collection of open subsets of \mathbb{R}^n such that

$$U = \bigcup_{\alpha \in I} U_{\alpha}.$$
 (3.169)

Theorem 3.30. There exist functions $f_i \subseteq \mathcal{C}_0^{\infty}(U)$ such that

- 1. $f_1 \ge 0$,
- 2. supp $f_i \subseteq U_{\alpha}$, for some α ,
- 3. For every $p \in U$, there exists a neighborhood U_p of p such that $U_p \cup \text{supp } f_i = \phi$ for all $i > N_p$,
- 4. $\sum f_i = 1.$

Remark. Property (4) makes sense because of property (3), because at each point it is a finite sum.

Remark. A set of functions satisfying property (4) is called a *partition of unity*.

Remark. Property (2) can be restated as "the partition of unity is subordinate to the cover $\{U_{\alpha} : \alpha \in I\}$."

Let us look at some typical applications of partitions of unity.

The first application is to improper integrals. Let $\phi: U \to \mathbb{R}$ be a continuous map, and suppose

$$\int_{U} \phi \tag{3.170}$$

is well-defined. Take a partition of unity $\sum f_i = 1$. The function $f_i \phi$ is continuous and compactly supported, so it bounded. Let supp $f_i \subseteq Q_i$ for some rectangle Q_i . Then,

$$\int_{Q_i} f_i \phi \tag{3.171}$$

is a well-defined R. integral. It follows that

$$\int_{U} f_i \phi = \int_{Q_i} f_i \phi. \tag{3.172}$$

It follows that

$$\int_{U} \phi = \sum_{i=1}^{\infty} \int_{Q_i} f_i \phi.$$
(3.173)

This is proved in Munkres.

The second application of partitions of unity involves *cut-off functions*. Let $f_i \in \mathcal{C}_0^{\infty}(U)$, i = 1, 2, 3, ... be a partition of unity, and let $A \subseteq U$ be compact. **Lemma 3.31.** There exists a neighborhood U' of A in U and a number N > 0 such that $A \cup \text{supp } f_i = \phi$ for all i > N.

Proof. For any $p \in A$, there exists a neighborhood U_p of p and a number N_p such that $U' \cup \text{supp } f_i = \phi$ for all $i > N_p$. The collection of all these U_p is a cover of A. By the H-B Theorem, there exists a finite subcover U_{p_i} , $i = 1, 2, 3, \ldots$ of A. Take $U_p = \bigcup U_{p_i}$ and take $N = \max\{N_{p_i}\}$.

We use this lemma to prove the following theorem.

Theorem 3.32. Let $A \subseteq \mathbb{R}^n$ be compact, and let U be an open set containing A. There exists a function $f \in \mathcal{C}_0^{\infty}(U)$ such that $f \equiv 1$ (identically equal to 1) on a neighborhood $U' \subset U$ of A.

Proof. Choose U' and N as in the lemma, and let

$$f = \sum_{i=1}^{N} f_i.$$
 (3.174)

Then supp $f_i \cap U' = \phi$ for all i > N. So, on U',

$$f = \sum_{i=1}^{\infty} f_i = 1.$$
 (3.175)

Such an f can be used to create cut-off functions. We look at an application.

Let $\phi : U \to \mathbb{R}$ be a continuous function. Define $\psi = f\phi$. The new function ψ is called a cut-off function, and it is compactly supported with supp $\phi \subseteq U$. We can extend the domain of ψ by defining $\psi = 0$ outside of U. The extended function $\psi : \mathbb{R}^n \to \mathbb{R}$ is still continuous, and it equals ϕ on a neighborhood of A.

We look at another application, this time to *exhaustion functions*.

Definition 3.33. Given an open set U, and a collection of compact subsets $A_i i = 1, 2, 3, \ldots$ of U, the sets A_i form an *exhaustion of* U if $A_i \subseteq \text{Int } A_{i+1}$ and $\cup A_i = U$ (this is just a quick reminder of the definition of exhaustion).

Definition 3.34. A function $\phi \in \mathcal{C}^{\infty}(U)$ is an *exhaustion function* if

- 1. $\phi > 0$,
- 2. the sets $A_i = \phi^{-1}([0, 1])$ are compact.

Note that this implies that the $A'_i s$ are an exhaustion.

We use the fact that we can always find a partition of unity to show that we can always find exhaustion functions.

Take a partition of unity $f_i \in \mathcal{C}^{\infty}(U)$, and define

$$\phi = \sum_{i=1}^{\infty} i f_i. \tag{3.176}$$

This sum converges because only finitely many terms are nonzero.

Consider any point

$$p \notin \bigcup_{j \le i} \text{supp } f_j. \tag{3.177}$$

Then,

$$1 = \sum_{k=1}^{\infty} f_k(p)$$

= $\sum_{k>i} f_k(p),$ (3.178)

 \mathbf{SO}

$$\sum_{\ell=1}^{\infty} \ell f_{\ell}(p) = \sum_{\ell>i} \ell f_{\ell}$$

$$\geq i \sum_{\ell>i} f_{\ell}$$

$$= i.$$
(3.179)

That is, if $p \notin \bigcup_{j \leq i} \text{supp } f_j$, then f(p) > i. So,

$$\phi^{-1}([0,i]) \subseteq \bigcup_{j \le i} \operatorname{supp} f_j, \qquad (3.180)$$

which you should check yourself. The compactness of the r.h.s. implies the compactness of the l.h.s.

Now we look at problem number 4 in section 16 of Munkres. Let A be an arbitrary subset of \mathbb{R}^n , and let $g: A \to \mathbb{R}^k$ be a map.

Definition 3.35. The function g is \mathcal{C}^k on A if for every $p \in A$, there exists a neighborhood U_p of p in \mathbb{R}^n and a \mathcal{C}^k map $g^p : U_p \to \mathbb{R}^k$ such that $g^p | U_p \cap A = g | U_p \cap A$.

Theorem 3.36. If $g: A \to \mathbb{R}^k$ is \mathcal{C}^k , then there exists a neighborhood U of A in \mathbb{R}^n and a \mathcal{C}^k map $\tilde{g}: U \to \mathbb{R}^k$ such that $\tilde{g} = g$ on A.

Proof. This is a very nice application of partition of unity. Read Munkres for the proof. \Box