Lecture 14

As before, let $f : \mathbb{R} \to \mathbb{R}$ be the map defined by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ e^{-1/x} & \text{if } x > 0. \end{cases}$$
(3.162)

This is a $Cinf(\mathbb{R})$ function. Take the interval $[a, b] \in \mathbb{R}$ and define the function $f_{a,b} : \mathbb{R} \to \mathbb{R}$ by $f_{a,b}(x) = f(x-a)f(b-x)$. Note that $f_{a,b} > 0$ on (a, b), and $f_{a,b} = 0$ on $\mathbb{R} - (a, b)$.

We generalize the definition of f to higher dimensions. Let $Q \subseteq \mathbb{R}^n$ be a rectangle, where $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Define a new map $f_Q : \mathbb{R}^n \to \mathbb{R}$ bye

$$f_Q(x_1, \dots, x_n) = f_{a_1, b_1}(x_1) \dots f_{a_n, b_n}(x_n).$$
(3.163)

Note that $f_Q > 0$ on Int Q, and that $f_Q = 0$ on \mathbb{R}^n – Int Q.

3.9 Support and Compact Support

Now for some terminology. Let U be an open set in \mathbb{R}^n , and let $f : U \to \mathbb{R}$ be a continuous function.

Definition 3.26. The support of f is

supp
$$f = \overline{\{x \in U : f(x) \neq 0\}}.$$
 (3.164)

For example, supp $f_Q = Q$.

Definition 3.27. Let $f : U \to \mathbb{R}$ be a continuous function. The function f is *compactly supported* if supp f is compact.

Notation.

 $C_0^k(U)$ = The set of compactly supported C^k functions on U. (3.165)

Suppose that $f \in \mathcal{C}_0^k(U)$. Define a new set $U_1 = (\mathbb{R}^n - \text{supp } f)$. Then $U \cup U_1 = \mathbb{R}^n$, because supp $f \subseteq U$.

Define a new map $f : \mathbb{R}^n \to \mathbb{R}$ by

$$\tilde{f} = \begin{cases} f & \text{on } U, \\ 0 & \text{on } U_1. \end{cases}$$
(3.166)

The function \tilde{f} is \mathcal{C}^k on U and \mathcal{C}^k on U_1 , so \tilde{f} is in $\mathcal{C}_0^k(\mathbb{R}^n)$.

So, whenever we have a function $f \in \mathcal{C}^k$ is compactly supported on U, we can drop the tilde and think of f as in $\mathcal{C}_0^k(\mathbb{R}^n)$.

3.10 Partitions of Unity

Let $\{U_{\alpha} : \alpha \in I\}$ be a collection of of open subsets of \mathbb{R}^n such that $U = \bigcup_{\alpha} U_{\alpha}$.

Theorem 3.28. There exists a sequence of rectangles Q_i , i = 1, 2, 3, ... such that

- 1. Int Q_i , i = 1, 2, 3... is a cover of U,
- 2. Each $Q_i \subset I_\alpha$ for some α ,
- 3. For every point $p \in U$, there exists a neighborhood U_p of p such that $U_p \cap Q_i = \phi$ for all $i > N_p$.

Proof. Take an exhaustion A_1, A_2, A_3, \ldots of U. By definition, the exhaustion satisfies

$$\begin{cases} A_i \subseteq \text{Int } A_{i+1} \\ A_i \text{ is compact} \\ \cup A_i = U. \end{cases}$$

We previously showed that you can always find an exhaustion.

Let $B_i = A_i - \text{Int } A_{i-1}$. For each $x \in B_i$, let Q_x be a rectangle with $x \in \text{Int } Q_x$ such that $Q_x \subseteq U_\alpha$, for some alpha, and $Q_x \subset \text{Int } A_{i+1} - A_{i-2}$. Then, the collection of sets {Int $Q_x : x \in B_i$ } covers B_i . Each set B_i is compact, so, by the H-B Theorem, there exists a finite subcover Int $Q_{x_r} \equiv \text{Int } Q_{i,r}, r = 1, \ldots, N_i$.

The rectangles $Q_{i,r}, 1 \leq r \leq N_i, i = 1, 2, 3...$ satisfy the hypotheses of the theorem, after relabeling the rectangles in linear sequence Q_1, Q_2, Q_3 , etc. (you should check this).

The following theorem is called the Partition of Unity Theorem.

Theorem 3.29. There exist functions $f_i \subseteq \mathcal{C}_0^{\infty}(U)$ such that

- 1. $f_1 \ge 0$,
- 2. supp $f_i \subseteq U_{\alpha}$, for some α ,
- 3. For every $p \in U$, there exists a neighborhood U_p of p such that $U_p \cup \text{supp } f_i = \phi$ for all $i > N_p$,
- 4. $\sum f_i = 1.$

Proof. Let $Q_i, i = 1, 2, 3, ...$ be a collection of rectangles with the properties of the previous theorem. Then the functions $f_{Q_i}, i = 1, 2, 3, ...$ have all the properties presented in the theorem, except for property 4. We now prove the fourth property. We now that $f_{Q_i} > 0$ on Int Q_i , and {Int $Q_i : i = 1, 2, 3, ...$ } is a cover of U. So, for every $p \in U, f_{Q_i}(p) > 0$ for some i. So

$$\sum f_{Q_i} > 0. (3.167)$$

We can divide by a nonzero number, so we can define

$$f_i = \frac{f_{Q_i}}{\sum_{i=1}^{\infty} f_{Q_i}}.$$
(3.168)

This new function satisfies property 4. Note that the infinite sum converges because the sum has only a finite number of nonzero terms. $\hfill \Box$