Lecture 13

Let A be an open set in \mathbb{R}^n , and let $f : A \to \mathbb{R}$ be a continuous function. For the moment, we assume that $f \ge 0$. Let $D \subseteq A$ be a compact and rectifiable set. Then f|D is bounded, so $\int_D f$ is well-defined. Consider the set of all such integrals:

$$# = \{ \int_D f : D \subseteq A, D \text{ compact and rectifiable} \}.$$
(3.122)

Definition 3.22. The *improper integral of* f *over* A exists if * is bounded, and we define the improper integral of f over A to be its l.u.b.

$$\int_{A}^{\#} f \equiv \text{l.u.b.} \quad \int_{D} f = \text{ improper integral of } f \text{ over } A. \tag{3.123}$$

Claim. If A is rectifiable and $f: A \to \mathbb{R}$ is bounded, then

$$\int_{A}^{\#} f = \int_{A} f.$$
 (3.124)

Proof. Let $D \subseteq A$ be a compact and rectifiable set. So,

$$\int_{D} f \le \int_{A} f \tag{3.125}$$

$$\implies \sup_{D} \int_{D} f \le \int_{A} f \tag{3.126}$$

$$\implies \int_{A}^{\#} f \le \int_{A} f. \tag{3.127}$$

The proof of the inequality in the other direction is a bit more complicated.

Choose a rectangle Q such that $\overline{A} \subseteq \text{Int } Q$. Define $f_A : Q \to \mathbb{R}$ by

$$f_A(x) = \begin{cases} f(x) & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$
(3.128)

By definition,

$$\int_{A} f = \int_{Q} f_{A}.$$
(3.129)

Now, let P be a partition of Q, and let R_1, \ldots, R_k be rectangles belonging to a partition of A. If R is a rectangle belonging to P not contained in A, then $R - A \neq \phi$. In such a case, $m_R(f_A) = 0$. So

$$L(f_A, P) = \sum_{i=1}^{k} m_{R_i}(f_A) v(R_i).$$
(3.130)

On the rectangle R_i ,

$$f_A = f \ge m_{R_i}(f_A).$$
 (3.131)

So,

$$\sum_{i=1}^{k} m_{R_i}(f_A) v(R_i) \leq \sum \int_{R_i} f$$

$$= \int_D f$$

$$\leq \int_A^{\#},$$
(3.132)

where $D = \bigcup R_i$, which is compact and rectifiable.

The above was true for all partitions, so

$$\int_{Q} f_A \le \int_{Z}^{\#} f. \tag{3.133}$$

We proved the inequality in the other direction, so

$$\int_{A} f = \int_{A}^{\#} f.$$
 (3.134)

3.8 Exhaustions

Definition 3.23. A sequence of compact sets C_i , i = 1, 2, 3... is an *exhaustion of* A if $C_i \subseteq$ Int C_{i_1} for every i, and $\bigcup C_i = A$.

It is easy to see that

$$\bigcup \text{Int } C_i = A. \tag{3.135}$$

Let C_i , i = 1, 2, 3, ... be an exhaustion of A by compact rectifiable sets. Let $f: A \to \mathbb{R}$ be continuous and assume that $f \ge 0$. Note that

$$\int_{C_i} f \le \int_{C_{i=1}} f, \qquad (3.136)$$

since $C_{i=1} \supset C_i$. So

$$\int_{C_i} f, \ i = 1, 2, 3 \dots$$
 (3.137)

is an increasing (actually, non-decreasing) sequence. Hence, either $\int_{C_i} f \to \infty$ as $i \to \infty$, or it has a finite limit (by which we mean $\lim_{i\to\infty} \int_{C_i} f$ exists).

Theorem 3.24. The following two properties are equivalent:

- 1. $\int_A^{\#} f$ exists,
- 2. $\lim_{i\to\infty} \int_{C_i} f$ exists.

Moreover, if either (and hence both) property holds, then

$$\int_{A}^{\#} f = \lim_{i \to \infty} \int_{C_i} f. \tag{3.138}$$

Proof. The set C_i is a compact and rectifiable set contained in A. So, if

$$\int_{A}^{\#} f \text{ exists, then}$$
(3.139)

$$\int_{C_i} f \le \int_A^\# f. \tag{3.140}$$

That shows that the sets

$$\int_{C_i} f, \ i = 1, 2, 3 \dots \tag{3.141}$$

are bounded, and

$$\lim_{i \to \infty} \int_{C_i} f \le \int_A^\# f. \tag{3.142}$$

Now, let us prove the inequality in the other direction.

The collection of sets {Int $C_i : i = 1, 2, 3...$ } is an open cover of A. Let $D \subseteq A$ be a compact rectifiable set contained in A. By the H-B Theorem,

$$D \subseteq \bigcup_{i=1}^{N} \text{Int } C_i, \tag{3.143}$$

for some N. So, $D \subseteq \text{Int } C_N \subseteq C_N$. For all such D,

$$\int_{D} f \le \int_{C_i} f \le \lim_{i \to \infty} \int_{C_i} f.$$
(3.144)

Taking the infimum over all D, we get

$$\int_{A}^{\#} f \le \lim_{i \to \infty} \int_{C_i} f. \tag{3.145}$$

We have proved the inequality in both directions, so

$$\int_{A}^{\#} f = \lim_{i \to \infty} \int_{C_{i}} f.$$
 (3.146)

A typical illustration of this theorem is the following example.

Consider the integral

$$\int_0^1 \frac{dx}{\sqrt{x}},\tag{3.147}$$

which we wrote in the normal integral notation from elementary calculus. In our notation, we would write this as

$$\int_{(0,1)} \frac{1}{\sqrt{x}}.$$
(3.148)

Let $C_N = [\frac{1}{N}, 1 - \frac{1}{N}]$. Then

$$\int_{(0,1)}^{\#} \frac{1}{\sqrt{x}} = \lim_{N \to \infty} \int_{C_N} \frac{A}{\sqrt{x}}$$

$$= 2\sqrt{x} |_{1/N}^{1-1/N} \to 2 \text{ as } N \to \infty.$$
(3.149)

So,

$$\int_{(0,1)}^{\#} \frac{1}{\sqrt{x}} = 2. \tag{3.150}$$

Let us now remove the assumption that $f \ge 0$. Let $f : A \to \mathbb{R}$ be any continuous function on A. As before, we define

$$f_{+}(x) = \max\{f(x), 0\}, \qquad (3.151)$$

$$f_{-}(x) = \max\{-f(x), 0\}.$$
(3.152)

We can see that f_+ and f_- are continuous.

Definition 3.25. The improper R. integral of f over A exists if and only if the improper R. integral of f_+ and f_- over A exist. Moreover, we define

$$\int_{A}^{\#} f = \int_{A}^{\#} f_{+} - \int_{A}^{\#} f_{-}.$$
 (3.153)

We compute the integral using an exhaustion of A.

$$\int_{A}^{\#} f = \lim_{N \to \infty} \left(\int_{C_{N}} f_{+} - \int_{C_{N}} f_{-} \right)$$

=
$$\lim_{N \to \infty} \int_{C_{N}} f.$$
 (3.154)

Note that $|f| = f_{+} + f_{-}$, so

$$\lim_{N \to \infty} \left(\int_{C_N} f_+ + \int_{C_N} f_- \right) = \lim_{N \to \infty} \int_{C_N} |f|.$$
(3.155)

Therefore, the improper integral of f exists if and only if the improper integral of |f| exists.

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ e^{-1/x} & \text{if } x > 0. \end{cases}$$
(3.156)

This is a $\mathcal{C}^{\infty}(\mathbb{R})$ function. Clearly, $f'(x) = f''(x) = \ldots = 0$ when x = 0, so in the Taylor series expansion of f at zero,

$$\sum a_n x^n = 0, \qquad (3.157)$$

all of the coefficients a_n are zero. However, f has a non-zero value in every neighborhood of zero.

Take $a \in \mathbb{R}$ and $\epsilon > 0$. Define a new function $g_{a,a+\epsilon} : \mathbb{R} \to \mathbb{R}$ by

$$g_{a,a+\epsilon}(x) = \frac{f(x-a)}{f(x-a) + f(a+\epsilon-x)}.$$
(3.158)

The function $g_{a,a+\epsilon}$ is a $\mathcal{C}^{\infty}(\mathbb{R})$ function. Notice that

$$g_{a,a+\epsilon} = \begin{cases} 0 & \text{if } x \le a, \\ 1 & \text{if } x \ge a + \epsilon. \end{cases}$$
(3.159)

Take b such that $a < a + \epsilon < b - \epsilon < b$. Define a new function $h_{a,b} \in \mathcal{C}^{\infty}(\mathbb{R})$ by

$$h_{a,b}(x) = g_{a,a+\epsilon}(x)(1 - g_{a-\epsilon,b}(x)).$$
(3.160)

Notice that

$$h_{a,b} = \begin{cases} 0 & \text{if } x \le a, \\ 1 & \text{if } a + \epsilon \le x \le b - \epsilon, \\ 0 & \text{if } b \le x. \end{cases}$$
(3.161)