18.100C Lecture 24 Summary

Consider Fourier series

$$
a_{0}+\sum_{k=1}^{\infty} a_{k} \sin (k x)+\sum_{k=1}^{\infty} \tilde{a}_{k} \cos (k x)
$$

Lemma 24.1. If $\sum_{k}\left|a_{k}\right|$ and $\sum_{k}\left|\tilde{a}_{k}\right|$ converge, the Fourier series is uniformly convergent for $x \in \mathbb{R}$.

In that situation, the Fourier series defines a continuous 2π-periodic function $f(x)$.
Lemma 24.2. If $\sum_{k} k\left|a_{k}\right|$ and $\sum_{k} k\left|\tilde{a}_{k}\right|$ converge, the function $f(x)$ defined by the Fourier series is differentiable, and its derivative is

$$
\sum_{k=1}^{\infty} a_{k} k \cos (k x)-\sum_{k=1}^{\infty} \tilde{a}_{k} k \sin (k x) .
$$

It's more convenient to think in terms of complex-valued functions, where Fourier series are

$$
\sum_{k \in \mathbb{Z}} c_{k} \exp (i k t) .
$$

(convergence here means, say, convergence of the sum from $k=-N$ to $k=N$, as $N \rightarrow \infty$). Given any 2π-periodic Riemann integrable function $h(x)$, one defines its Fourier coefficients

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(x) e^{-i k x} d x
$$

Theorem 24.3. Suppose that $h(x)$ is differentiable and $h^{\prime}(x)$ is continuous. Then the Fourier series $\sum_{k} c_{k} \exp (i k x)$ converges uniformly to the original function $h(x)$.
Theorem 24.4 (Parseval's theorem). Let $h(x)$ be a 2π-periodic Riemann integrable function. Define its Fourier sums as

$$
s_{N}(h, x)=\sum_{k=-N}^{N} c_{k} e^{i k x} .
$$

Then we have "average convergence"

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi}\left|h(x)-s_{N}(h, x)\right|^{2} d x=0
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

