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Suppose F is a field, and x, y ∈ F satisfy x2 = y2. We need to show 
that either x = y or x = −y. For the sake of sparing the proliferation of 
parenthesis, we will adopt the standard conventions about multiplication 
and addition, i.e. x + y · z is x + (y · z) rather than (x + y) · z. 

Now consider the quantity (x + (−y)) · (x + y). Using the distributive 
property, this is equal to (x + (−y))x + (x + (−y))y. Using distributiv
ity again, we get (x2 + (−y) · x) + (x · y + (−y) · y). Using associativity 
of addition and commutativity of multiplication, we can rearrange this to 
x2 + ((x · y + x · (−y)) + (−y) · y). Now, we have 

x · y + x · (−y) = x · (y + (−y)) = x · 0 = 0 

Where the first step follows from distributivity, the second from the defini
tion of −y, and the third from noting that that x · 0 = x · (0+0) = x · 0+ x · 0 
and adding −(x ·  0) to both sides. Similarly, y · (−y) + y2 = 0, and adding 
−y2 on the right to both sides gives (−y) · y = −y2. Going back, we have 

(x − y) · (x + y) = x2  + ((x · y + x · (−y)) + (−y) · y) 

= x2  + ((0) + (−y 2)) =  x2 + (−y 2) 

But by assumption x2 = y2, so  this is equal to y2 + (−y2) = 0. In other 
words, (x − y) · (x + y) = 0. 

If x = y, then we are done. So suppose x = y. Then x − y = 0, since 
if x − y = 0 we have y = 0 + y = (x − y) + y = x + (y − y) = x + 0 = x 
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using, respectively, definition of 0, substitution, associativity of addition, 
definition of −y, and definition of 0. So there must exist a multiplicative 
inverse (x − y)−1 . Then we have 

0 = (x − y)−1 · 0 = (x − y)−1((x − y)(x + y) = 

((x − y)−1(x − y))(x + y) = 1 · (x + y) = x + y 

The first equality is a fact we already proved, the second is just substitu
tion, the third is associativity of multiplication, the fourth is the definition 
of multiplicative inverse, and the fifth is the definition of 1. 

Now we get 

x = x + 0 = x + (y − y) = (x + y) − y = 0 − y = −y 

Using the definition of 0, definition of −y, associativity of addition, substi
tution, and definition of 0. In other words, if x = y, then x = −y, which is 
what we wanted to prove. 
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Suppose E is a finite dense subset of X. Then E contains no limit points. 
To see this, suppose x ∈ X is a limit point of E. Then by Theorem 2.20 
of Rudin, every neighbourhood of x has to contain infinitely many points 
of E. But E only has finitely many points, so this is obviously impossible. 
Since E has no limit points, it is vacuously true that it contains all its limit 
points, so E is closed and E = E. But E is dense in X, so E = X. This 
means that X = E, so X itself must be finite since E is. 
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We will show that Z is not compact in the p-adic topology by constructing 
an infinite set with no limit points. We begin with an elementary 

Lemma 1: Let m ∈ N and k the largest natural number with pk|m. Let 
l be natural number with m < pl . Then pk is the largest power of p dividing 
m + pl 
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 Proof: We have pk ≤ m < pl, so k < l and pk|pl  , hence pk divides m + pl. 
    ≤   Since k < l, k+1 l, so pk+1|pl. But then pk+1 cannot divide m + pl, since 

then it would divide (m + pl) − pl = m, a contradiction. 

 N i=n Now for n ∈ , we introduce the finite sum s 2i
n = i=0 p , where p is

the prime with respect to which we define the p-adic metric on Z. Let 
S = {sn|n ∈ N} be the set of all these numbers. S is 

 
obviously infinite, so 

if we can show that S has no limit points we are done. To do so, we need 
another elementary 

Lemma 2: 2s < p2n+2 
n 

Proof: Recall that by the formula for the sum of a geometric series, sn = 
− 2  (p2n+2 1)/(p −  1). Since p ≥ 2 we have p2 > 3, and so p2n+4−3p2n+2+2 = 

p2n+2(p2 − 3) + 2 > 0. Using these facts, the lemma follows from simple al
gebra: 

2n+2 p  1
0 < p2n+4−3p2 n+2+2 =⇒ 2p 2n+2 −−2 < p2n+2(p2−1) =⇒ 2· < p2n+2

p2 − 1 

 =⇒ 2sn < p2n+2

With these two lemmas, we can show that S has no limit points. Let 
x ∈ Z. Pick some n sufficiently large that |x| < sn, which is always 
possible since sn > n. Let k ∈ N be the largest power of p dividing 
sn − x, i.e. d(x, s p k

n) = − . sn > |x| means that sn − x ∈ N is positive, 
and sn − x < 2s 2n+2

n < p , where the last step follows from Lemma 2. 
By Lemma 1, the largest power of p dividing (s − x) + p2n+2

n is k. But 
  (sn − x) + p2n+2 = (s + p2n+2

n ) − x = sn+1 − x, and so d(x, s −k
n+1) = p . 

Applying this argument again, d(x, s k
n+2) = p− , and indeed by induction 

d(x, s k
m) = p for all m ≥ n. Now let E > 0 n   be a real umber with E < p−k. 

Then if sm ∈ S ∩ NE(x), we must have m < n. So this neighbourhood 
contains only finitely many points of S, and hence x is not a limit point of 
S. Since x was arbitrary, this means that S has no limit points and Z is not 
compact. 
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We have K ⊂ X compact, E ⊂ X closed, and K ∩ E = ∅. We need to show 
that there exists D > 0 such that d(x, y) ≥ D for x ∈ X, y ∈ Y . 

Suppose not; we will derive a contradiction. Then for every D > 0, we 
can find x ∈ K, y ∈ E such that d(x, y) < D. For each n ∈ N, pick some 
xn ∈ K, and yn ∈ E, such that d(xn, yn) < 1/n. Let S = {xn|n ∈ N} be the 
set of all the xn’s. We consider two cases. 

Case 1: S is finite. This means there is a finite collection of points {z1, z2 . . . zM }
such that for all i ∈ N, there exists j ≤ M such that xi = zj . Now define 
the set Nj ⊂ N, 1 ≤ j ≤ M , by Nj = {i ∈ N|xi = zj }. By assumption, N 
is the union of the Nj ’s. But since there are only finite many Nj ’s, at least 
one of them must be infinite, since otherwise N would be a finite union of 
finite sets, and hence finite. So pick a j such that Nj is infinite. 

I claim that zj is a limit point of E. Fix any E > 0; we will find y ∈ NE(zj )∩E. 
Take some N0 ∈ N with 1/N0 < E. Since Nj is infinite and there are obvi
ously only finite many positive integers less than N0, there must exist some 
n ∈ Nj with n > N0. Then 1/n < 1/N0, and by definition zj = xn, and 

d(zj , yn) = d(xn, yn) < 1/n < E 

This means that zj is a limit point of E. Since E is closed, zj ∈ E. On the 
other hand, zj = xn and xn ∈ K by construction. Thus zj ∈ K ∩ E, but 
K ∩ E = ∅, contradiction. 

Case 2: S is infinite. S is an infinite subset of a compact set K, hence 
must have a limit point x. x is then obviously a limit point of K, and since 
compact sets are closed we must have x ∈ K. We will show that it is also a 
limit point of E. Let E > 0; as before, we want to find y ∈ E with d(x, y) < E. 

Since x is a limit point of E, the neighbourhood NE/2(x) must contain in
finitely many points of S. Pick N ∈ N with 1/N < E/2. Since there are only 
finitely many xn with n ≤ N , and S ∩ NE/2(x) is infinite, there must be an 
xn ∈ S ∩ NE/2(x) with n > N . Then using the triangle inequality we have 

d(x, yn) ≤ d(x, xn) + d(xn, yn) < E/2 + 1/n < E/2 + E/2 = E 
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Since E was arbitrary, this means that x is a limit point of E. But E is 
closed, so x ∈ E, and we already knew that x ∈ K, contradiction. 
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