Practice final exam solutions

We write $d=d_{S N C F}$ for the French Railroad metric on \mathbb{R}^{2}. In this problem we will often use the easily checked fact that if $\left(x_{n}\right)$ is a Cauchy sequence in any metric space, then $x_{n} \rightarrow x$ if and only if $x_{n_{k}} \rightarrow x$ for some subsequence $\left(x_{n_{k}}\right)$.

So let $\left(x_{n}\right) \subset \mathbb{R}^{2}$ be a Cauchy sequence with respect to d. We will show that $\left(x_{n}\right)$ is convergent, and hence that d is a complete metric. If $x_{n} \rightarrow 0$ then obviously we are done, so assume $\left(x_{n}\right)$ does not converge to 0 . Note that since 0 lies on every line through the origin by definition, we have that $d\left(x_{n}, 0\right)=\left|x_{n}\right|$.

I claim that there exists $\epsilon>0$ such that $\left|x_{n}\right|>\epsilon$ for all $n \in \mathbb{N}$. Indeed, if not then there exists a subsequence $\left(x_{n_{k}}\right)$ with $\left|x_{n_{k}}\right| \rightarrow 0$ as $k \rightarrow \infty$, which means that the subsequence ($x_{n_{k}}$) converges to 0 with respect to d. Then since $\left(x_{n}\right)$ is Cauchy, $x_{n} \rightarrow 0$, contradiction.

Now let $N \in \mathbb{N}$ be sufficiently large that $d\left(x_{n}, x_{m}\right)<\epsilon$ for $n, m>N$. Then x_{n} and x_{m} must lie on the same line. If they didn't, then

$$
\epsilon>d\left(x_{n}, x_{m}\right)=\left|x_{n}\right|+\left|x_{m}\right|>\epsilon+\epsilon
$$

Contradiction.

In other words, there exists a line $l \subset \mathbb{R}^{2}$ with $x_{n} \in l$ for $n>N$. For any $n, m>N$, we then have $d\left(x_{n}, x_{m}\right)=\left|x_{n}-x_{m}\right|$. Thus, $\left(x_{n}\right)$ is a Cauchy sequence with respect to the standard Euclidean metric on \mathbb{R}^{2}, since d will agree that metric for sufficiently large n. Since $|\cdot|$ is complete, there exists
$x \in \mathbb{R}^{2}$ with $\lim _{n \rightarrow \infty}\left|x-x_{n}\right|=0$. Lines are closed subsets of \mathbb{R}^{2} with respect to $|\cdot|$, so $x \in l$. Then $d\left(x_{n}, x\right)=\left|x_{n}-x\right|$. Thus $x_{n} \rightarrow x$ with respect to d, and so d is complete.

2

Let $E=\mathbb{Q} \cap[0,1] . \quad E$ is an infinite subset of a countably infinite set, hence is countably infinite. In other words, there exists a bijective function $f: \mathbb{N} \rightarrow E$. Define the sequence $\left(x_{n}\right)$ via $x_{n}=f(n)$. Note that $\bar{E}=[0,1]$

Let F be the set of all subsequential limits of E. I claim that $F=[0,1]$. Suppose that $x \in F$. Take a subsequence $\left(x_{n_{k}}\right)$ converging to x. Then every neighbourhood of x contains all but finitely many $\left(x_{n_{k}}\right)$, and in particular intersects E. So $x \in \bar{E}=[0,1]$.

Conversely, suppose $x \in[0,1]$. We will construct a subsequence $x_{n_{k}} \rightarrow x$ inductively. Let $n_{1}=1$. Suppose we have definted $n_{1}, n_{2}, \ldots n_{k}$. Consider the subset $A_{k+1} \subset \mathbb{N}$, defined by

$$
A_{k+1}=\left\{n \in \mathbb{N}| | x-f(n) \left\lvert\,<\frac{1}{k}\right.\right\}
$$

Recall that $x_{n}=f(n)$. Since x is a limit point of $E, B_{1 / k+1}(x)$ contains infinitely many points of E; since f is surjective, this implies that A_{k+1} is infinite. Thus we can pick a $n_{k+1} \in A_{k+1}$ with $n_{k+1}>n_{k}$.

Thus we have constructed a subsequence $\left(x_{n_{k}}\right)$ with $\left|x-x_{n_{k}}\right|<1 / k$, which means that $x_{n_{k}} \rightarrow x$, so $x \in F$. Thus $F=[0,1]$ and we are done.

3

We have a continuous function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$. For a fixed $x \in[0,1]$, consider the function $h_{x}:[0,1] \rightarrow \mathbb{R}$ defined by $h_{x}(y)=f(x, y)$. Then h_{x} is continuous; indeed, for any $y \in[0,1]$ and $\epsilon>0$, take a $\delta>0$ that works for f and ϵ at (x, y). Since h_{x} is a continuous function on a compact set, it attains a finite maximum; in other words, for some $y_{0} \in[0,1]$, we have $f\left(x, y_{0}\right)=h_{x}\left(y_{0}\right) \geq h_{x}(y)=f(x, y)$ for all $y \in[0,1]$. Then

$$
g(x)=\sup _{y \in[0,1]}\{f(x, y)\}=f\left(x, y_{0}\right)
$$

Is well defined. We need to show that $g:[0,1] \rightarrow \mathbb{R}$ is continuous. Note that we have not only proved that g is well defined, but have also shown that for any $x \in[0,1]$, there exists $y \in[0,1]$ with $g(x)=f(x, y)$.

Let $x \in[0,1]$. We need to show that $\lim _{z \rightarrow x} g(z)=g(x)$. So suppose this is false. Then there exists $\epsilon>0$ and a sequence $\left(x_{n}\right)$ with $x_{n} \rightarrow x$ but $\left|g\left(x_{n}\right)-g(x)\right|>\epsilon$.

For each x_{n}, pick $y_{n} \in[0,1]$ such that $g\left(x_{n}\right)=f\left(x_{n}, y_{n}\right)$. Now consider the sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$. This a sequence in the compact set $[0,1] \times[0,1]$, hence has a convergent subsequence. In other words there exists $\left(x^{\prime}, y^{\prime}\right) \in$ $[0,1] \times[0,1]$ with $\left(x_{n_{k}}, y_{n_{k}}\right) \rightarrow\left(x^{\prime}, y^{\prime}\right)$. This implies that $x_{n_{k}} \rightarrow x^{\prime}$, but since this a subsequence of a convergent sequence, it must also converge to x, and so $x^{\prime}=x$.
f is continuous, and so

$$
f\left(x, y^{\prime}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}, y_{n_{k}}\right)=\lim _{k \rightarrow \infty} g\left(x_{n_{k}}\right)
$$

Hence, we must have $\left|g(x)-f\left(x, y^{\prime}\right)\right| \geq \epsilon$. Pick $y \in[0,1]$ with $f(x, y)=g(x)$. Then $f(x, y) \geq f\left(x, y^{\prime}\right)$, by the definition of g, and so

$$
f(x, y)-f\left(x, y^{\prime}\right) \geq \epsilon
$$

On the other hand, f is uniformally continuous, since it is a continuous function on a compact set. Pick a $\delta>0$ such that

$$
d\left((z, w),\left(z^{\prime}, w^{\prime}\right)\right)<\delta \Longrightarrow d\left(f(z, w), f\left(z^{\prime}, w^{\prime}\right)\right)<\epsilon / 3
$$

and k sufficiently large that $\left|x-x_{n_{k}}\right|,\left|y^{\prime}-y_{n_{k}}\right|<\delta / \sqrt{2}$. Then $\mid f(x, y)-$ $f\left(x_{n_{k}}, y\right) \mid<\epsilon / 3$, and so

$$
f\left(x_{n_{k}}, y\right)>f(x, y)-\epsilon / 3
$$

Similarly, $\left|f\left(x_{n_{k}}, y_{n_{k}}\right)-f\left(x, y^{\prime}\right)\right|<\epsilon / 3$, and so

$$
f\left(x, y^{\prime}\right)+\epsilon / 3>f\left(x_{n_{k}}, y_{n_{k}}\right)
$$

Putting these together, we have

$$
f\left(x_{n_{k}}, y\right)>f(x, y)-\epsilon / 3>f\left(x, y^{\prime}\right)+\epsilon / 3>f\left(x_{n_{k}}, y_{n_{k}}\right)
$$

This is a contradiction, since $f\left(x_{n_{k}}, y_{n_{k}}\right)=g\left(x_{n_{k}}\right)=\sup _{y}\left\{f\left(x_{n_{k}}, y\right)\right\}$.

4

We will show that $g^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right) / 2$ by directly evaluating the limit of difference quotients. We have

$$
\lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-\left(x-x_{0}\right) f^{\prime}(x)}{\left(x-x_{0}\right)^{2}}
$$

Note that both the numerator and the denominator of the above expression converge to 0 as $x \rightarrow x_{0}$. Since f is twice differentiable at x_{0}, it must be once differentiable in some neighbourhood of x_{0}, otherwise the second derivative would not even make sense. Thus we can apply L'Hopital's rule; the derivative of the numerator is $f^{\prime}(x)-f^{\prime}\left(x_{0}\right)$, while the derivative of the denominator is $2\left(x-x_{0}\right)$. In other words, we have

$$
\lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{2\left(x-x_{0}\right)}=\frac{f^{\prime \prime}(0)}{2}
$$

In particular, the limit exists, i.e. g is differentiable at x_{0}.

5

f is integrable, with integral 0 . Note that any closed interval $[x, y]$ with $x<y$ contains a point z with $f(z)=0$. Since f is non-negative, this implies that for any partition P, we have $L(f, P)=0$.

Let $\epsilon>0$. We will find a partition P with the upper Riemann sum $U(f, P)<$ 2ϵ, which will prove the result. Consider the function $g:[\epsilon, 1] \rightarrow \mathbb{R}$, which is equal tof restricted to the interval $[\epsilon, 1] . g$ has only finitely many points of discontinuity, namely, the finitely many points of the form $1 / n>\epsilon$ for
$n \in \mathbb{N}$. Hence by Rudin Theorem 6.10, g is integrable. Since all lower Riemann Sums of g are zero, we must have

$$
\int_{\epsilon}^{1} g(x)=0
$$

In particular, there exists a partition P of $[\epsilon, 1]$ with $U(g, P)<\epsilon$.
Now consider the partition of $[0,1]$ defined by $P^{\prime}=P \cup\{0\}$. Then all but the first term of $U\left(f, P^{\prime}\right)$ is contained in $U(g, P)$. More precisely, we have

$$
U\left(f, P^{\prime}\right)=\left(\sup _{x \in[0, \epsilon]} f(x)\right)(\epsilon-0)+U(g, P)<\epsilon+\epsilon=2 \epsilon .
$$

Which proves the result.

6

Since $f:[0,1] \rightarrow \mathbb{R}$ is integrable, it is bounded, i.e. $|f(x)|<M$ for all $x \in[0,1]$. We may assume $M>1$. Let $\epsilon>0$. Let $\delta<\epsilon /(2 M)$.

Note that $0<1-\delta<1$, and so by Rudin Theorem $3.20 \lim _{n \rightarrow \infty}(1-\delta)^{n}=0$. Let N be sufficienly large that $n>N \Longrightarrow(1-\delta)^{n}<\delta$. Then for any $0 \leq x \leq 1-\delta$ and any $n>N$, we have $x^{n}<\delta$. Hence for $n>N$, we have

$$
\left|\int_{0}^{1-\delta} f(x) x^{n} d x\right| \leq \int_{0}^{1-\delta}|f(x)| x^{n} d x<\int_{0}^{1-\delta} M \delta d x<M \delta<\frac{\epsilon}{2}
$$

On the other hand $x^{n} \leq 1$ for $x \in[0,1]$, and so

$$
\left|\int_{1-\delta}^{1} f(x) x^{n} d x\right|<\int_{1-\delta}^{1}|f(x)| x^{n} d x<\int_{1-\delta}^{1} M d x=M \delta<\frac{\epsilon}{2}
$$

Putting these together, we have

$$
\left|\int_{0}^{1} f(x) x^{n} d x\right| \leq\left|\int_{0}^{1-\delta} f(x) x^{n} d x\right|+\left|\int_{1-\delta}^{1} f(x) x^{n} d x\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Thus $\lim _{n} \int_{0}^{1} f(x) x^{n} d x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

