18.100B Problem Set 9 Solutions Sawyer Tabony

1) First we need to show that

$$
f_{n}(x)=\frac{1}{n x+1}
$$

converges pointwise but not uniformly on $(0,1)$. If we fix some $x \in(0,1)$, we have that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1}{n x+1}=0
$$

Thus the f_{n} converge pointwise. However, consider $\varepsilon=\frac{1}{4}$, and let $N \in \mathbb{N}$. Then

$$
f_{N}\left(\frac{1}{N}\right)=\frac{1}{N\left(\frac{1}{N}+1\right)}=\frac{1}{2} \nless \varepsilon .
$$

So the f_{n} do not converge to zero uniformly. Now we consider

$$
g_{n}=\frac{x}{n x+1} .
$$

Given $\varepsilon>0$, let $N \in \mathbb{N}$ be larger than $\frac{1}{\varepsilon}$. Then for any $x \in(0,1), M \geq N$, we have

$$
g_{M}(x)=\frac{x}{M x+1}=\frac{1}{M+\frac{1}{x}}<\frac{1}{M} \leq \frac{1}{N}<\varepsilon .
$$

Thus, g_{n} converges to 0 uniformly on $(0,1)$.
2) The functions f_{n} are defined on \mathbb{R} by

$$
f_{n}=\frac{x}{1+n x^{2}} .
$$

First we show $f_{n} \longrightarrow 0$. For any $\varepsilon>0$, choose $N>\frac{1}{\varepsilon^{2}}$. Then for $n>N$, if $|x| \leq \varepsilon$, $|x|<\varepsilon\left(1+n x^{2}\right)$ so $\left|f_{n}(x)\right|<\varepsilon$. If $|x|>\varepsilon$,

$$
|n \varepsilon x|>n \varepsilon^{2}>1 \Longrightarrow\left|n \varepsilon x^{2}\right|>|x| \Longrightarrow \varepsilon>\left|\frac{x}{n x^{2}}\right|>\left|\frac{x}{1+n x^{2}}\right|=\left|f_{n}(x)\right| .
$$

Thus f_{n} converges uniformly to $0=f$.
Differentiating, we find

$$
f_{n}^{\prime}(x)=\frac{\left(1+n x^{2}\right) \cdot 1-x \cdot(2 n x)}{\left(1+n x^{2}\right)^{2}}=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}} .
$$

Thus,

$$
\left|f_{n}^{\prime}(x)\right|=\left|\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}\right|=\frac{\left|1-n x^{2}\right|}{\left(1+n x^{2}\right)^{2}} \leq \frac{1+n x^{2}}{\left(1+n x^{2}\right)^{2}}=\frac{1}{1+n x^{2}} .
$$

So for all $x \neq 0, f_{n}^{\prime}(x) \longrightarrow 0$, but $f_{n}(0)=1, \forall n \in \mathbb{N}$. So if $g(x)=\lim f_{n}(x), g(0)=1 \neq 0=$ $f^{\prime}(0)$. But $f^{\prime}(x)=0$, and thus exists, for all x.

For all $x \neq 0, f^{\prime}(x)=0=g(x)$. We showed above that $f_{n} \longrightarrow f$ uniformly on all of \mathbb{R}. Finally, $f_{n}^{\prime} \longrightarrow g$ uniformly away from zero, that is, on any interval that does not have zero as a limit point. This is true because the denominator of f_{n}^{\prime} can be made arbitrarily large compared to the numerator, for $|x|>\varepsilon$.
3) So we have $f_{n} \longrightarrow f$ uniformly for f_{n} bounded. Then for $\varepsilon=1, \exists N$ such that $\forall n>N, x \in E$, $\left|f_{n}(x)-f(x)\right|<1$. Thus if f_{n} is bounded by $B_{n}, \forall x \in E,|f(x)|<1+B_{N}$ which implies that $\forall n>$ $N, x \in E, f_{n}(x)<B_{N}+2$. Thus $\left(f_{n}\right)$ is uniformly bounded by $\max \left\{B_{1}, B_{2}, \ldots, B_{N-1}, B_{N}+2\right\}$.

If the f_{n} are converging pointwise, f need not be bounded. For example, on $(0,1)$, if

$$
f_{n}(x)=\frac{1}{x+\frac{1}{n}}
$$

then $f_{n} \longrightarrow \frac{1}{x}$ pointwise, and each f_{n} is bounded by n, but of course $\frac{1}{x}$ is unbounded on $(0,1)$.
4) We have $f_{n} \longrightarrow f$ and $g_{n} \longrightarrow g$ uniformly.
a) Given $\varepsilon>0, \exists M, N \in \mathbb{N}$ such that for any $m>M, n>N,\left|f_{m}-f\right|<\frac{\varepsilon}{2}$ and $\left|g_{n}-g\right|<\frac{\varepsilon}{2}$. So for $n, m>\max \{M, N\}$

$$
\left|\left(f_{n}+g_{n}\right)-(f+g)\right|=\left|\left(f_{n}-f\right)+\left(g_{n}-g\right)\right| \leq\left|f_{n}-f\right|+\left|g_{n}-g\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

So $\left(f_{n}+g_{n}\right) \longrightarrow(f+g)$ uniformly.
b) If each f_{n} and g_{n} is bounded on E, by the previous problem they are uniformly bounded, say by A and B. Say without loss of generality $A \geq B$. Then for $\varepsilon>0$, choose N such that if $n>N,\left|f_{n}-f\right|<\frac{\varepsilon}{2 A}$ and $\left|g_{n}-g\right|<\frac{\varepsilon}{2 A}$. Then

$$
\left|f_{n} g_{n}-f g\right|=\left|f_{n} g_{n}-f g_{n}+f g_{n}-f g\right| \leq\left|f_{n}-f\right|\left|g_{n}\right|+|f|\left|g_{n}-g\right|<\frac{\varepsilon}{2 A} A+\frac{\varepsilon}{2 A} A=\varepsilon
$$

So $f_{n} g_{n}$ converges to $f g$ uniformly.
5) Define

$$
f(x)=x, \quad g(x)= \begin{cases}0 & \text { if } x \notin \mathbb{Q} \\ q & \text { if, in lowest terms, } x=p / q\end{cases}
$$

so that

$$
f_{n}(x)=f(x)\left(1+\frac{1}{n}\right), \quad \text { and } \quad g_{n}(x)=g(x)+\frac{1}{n}
$$

On any interval $[a, b]$, with $M=\max (|a|,|b|)$ we have

$$
\left|f_{n}(x)-f(x)\right|=\frac{|x|}{n} \leq \frac{M}{n}, \quad\left|g_{n}(x)-g(x)\right|=\frac{1}{n}
$$

so that $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly.
On the other hand, with $m=\min (|a|,|b|)$ we have

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & =\left|\left(f_{n}(x)-f(x)\right) g_{n}(x)+f(x)\left(g_{n}(x)-g(x)\right)\right| \\
& =\frac{f(x)}{n}\left(g(x)+\frac{n+1}{n}\right) \geq \frac{m}{n} g(x) .
\end{aligned}
$$

Now notice that if $L \in \mathbb{N}$ is larger than $b-a$ then there is an integer k such that $\frac{k}{L} \in[a, b]$, choosing $L \in \mathbb{N}$ larger than $\frac{n}{m}$ and larger than $b-a$ we get

$$
\left\|f_{n} g_{n}-f g\right\| \geq \frac{m}{n} g\left(\frac{k}{L}\right)=\frac{m}{n} L>1
$$

and hence $f_{n} g_{n}$ does not converge to $f g$ uniformly.
6) We want to show $g \circ f_{n} \longrightarrow g \circ f$ uniformly, for g continuous on $[-M, M]$. Since g is continuous on a compact set, it is uniformly continuous. So given $\varepsilon>0, \exists \delta>0$ such that if $|x-y|<\delta$, $|g(x)-g(y)|<\varepsilon$. Now since $f_{n} \longrightarrow f$ uniformly, $\exists N \in \mathbb{N}$ such that for any $n>N, x \in E$, $\left|f_{n}(x)-f(x)\right|<\delta$. Thus $\left|g\left(f_{n}(x)\right)-g(f(x))\right|<\varepsilon$, so $\left|g \circ f_{n}(x)-g \circ f(x)\right|<\varepsilon$. Thus we have shown $\left(g \circ f_{n}\right) \longrightarrow g \circ f$ uniformly on E.
7) a) First we claim that, for every $x \in[0,1]$,

$$
0 \leq P_{n}(x) \leq P_{n+1}(x) \leq \sqrt{x}
$$

This is clearly true for $n=0$, so assume inductively that it is true for $n=k$ and notice that

$$
\begin{aligned}
\sqrt{x}-P_{k+1}(x) & =\sqrt{x}-\left[P_{k}(x)+\frac{1}{2}\left(x-P_{k}(x)^{2}\right)\right] \\
& =\sqrt{x}-P_{k}(x)-\frac{1}{2}\left(\sqrt{x}-P_{k}(x)\right)\left(\sqrt{x}+P_{k}(x)\right) \\
& =\left(\sqrt{x}-P_{k}(x)\right)\left(1-\frac{1}{2}\left(\sqrt{x}+P_{k}(x)\right)\right) \geq 0 .
\end{aligned}
$$

It follows that $P_{k+1}(x) \leq \sqrt{x}$, and then

$$
P_{k+1}(x)-P_{k}(x)=\frac{1}{2}\left(x-P_{k}(x)^{2}\right) \geq 0
$$

shows that $P_{k}(x) \leq P_{k+1}(x)$, and proves the claim.
Notice that for every fixed x, the sequence $\left(P_{n}(x)\right)$ is monotone increasing and bounded above (by \sqrt{x}), it follows that this sequence converges, to say $f(x)$. This function $f(x)$ is non-negative and satisfies

$$
f(x)=\lim _{n \longrightarrow \infty} P_{n+1}(x)=\lim _{n \longrightarrow \infty}\left[P_{n}(x)+\frac{1}{2}\left(x-P_{n}(x)^{2}\right)\right]=f(x)+\left(x-f(x)^{2}\right)
$$

which implies $f(x)=\sqrt{x}$, and hence the polynomials converge pointwise to \sqrt{x} on $[0,1]$. Since they are continuous and converge monotonically to a continuous function on $[0,1]$, a compact set, they converge uniformly (by Dini's theorem).
b) Here we use a something similar to problem 6 along with the above work to show that $P_{n}\left(x^{2}\right) \longrightarrow|x|$ on $[-1,1]$. The difference between this and problem 6 is we need $\left(f_{n} \circ g\right) \longrightarrow$ $(f \circ g)$, but this is easier. Given $\varepsilon>0, \exists N \in \mathbb{N}$ with $\forall x \in[0,1], n>N,\left|P_{n}(x)-\sqrt{x}\right|<\varepsilon$. So for all $x \in[-1,1], n>N,\left|P_{n}\left(x^{2}\right)-\sqrt{x^{2}}\right|<\varepsilon$. Since $|x|=\sqrt{x^{2}}$, we have show that the polynomials $P_{n}\left(x^{2}\right)$ converge uniformly to $|x|$ on $[-1,1]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

