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SOLUTIONS TO PS 8
 Xiaoguang Ma 

Solution/Proof of Problem 1. From f(x) = f(x2), we have 

f(x) = f(x 
1
2

1
)n . 

= 0, so lim = 1. Since f is continuous, we 

1
4) = f(x ) = = f( 2x· · · 

n , and assume x 

have if x = 0� 
n→∞ 

f(x) = lim f(x) = lim f(yn) = f( lim yn) = f(1). 
n→∞ n→∞ n→∞ 

When x = 0, then f(0) = lim f(y) = f(1).
 

Then f is a constant. 
y→0
 

Solution/Proof of Problem 2. From MVT, we have ∀x > 0, ∃y = y(x) ∈
(x, x + 1), s.t. 

g(x) = f(x + 1) − f(x) = f �(y). 
Notice that y > x, so lim y = ∞, so we have 

x→∞ 

lim g(x) = lim f �(y) = 0, 
x→∞ x→∞ 

1 

since lim f �(y) = 0. 
y→∞ 

Solution/Proof of Problem 3. Consider the function 

g(x) = C0x + 
C1x

2 

+ + 
Cnxn+1 

.
2 

· · · 
n + 1 

Now let yn = x 2 yn 

Then g(0) = 0 and g(1) = C0 + C 
2 
1 + + Cn = 0. By the mean value theorem, · · · n+1 

we have that g�(y) = 0 for some y ∈ (0, 1), which means the equation C0 + C1x + 
n+ Cnx has a root between 0 and 1.· · · 

Solution/Proof of Problem 4. (a) Suppose f has two fixed point, x1 < x2. Then 
by MVT we have that 

∃y ∈ (x1, x2),
f(x2) − f(x1) = f �(y). 

x2 − x1 

Then f �(y) = 1 which is a contradiction. 
(b) If f has a fixed point, then
 

f(t) = t t = t + (1 + e t)−1 (1 + e t)−1 = 0.
⇒ ⇒ 

But we know that et > 0 then (1 + et)−1 = 0� . So f has no fixed point. 
(c)Consider a sequence defined by xn = f(xn−1) for any x1 ∈ R. Then we have 

|xn − xn−1| = |f(xn−1) − f(xn−2)| = |f �(y)||xn−1 − xn−2| � A|xn−1 − xn−2|. 
By using |x − z| � |x − y| + |y − z|, we have � � 

n−2 

|xn −xm| � |xn −xn−1|+ |xn−1 −xn−2|+ · · ·+ |xm+1 −xm| � Ai |x2 −x1|. 
i=m−1 

1 



� 
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Since A < 1, the series Ai converges, and so the partial sums form a Cauchy 
sequence. This inequality shows that {xn} is also a Cauchy sequence and hence 
converges. 

Notice that |f(x + h) − f(x)| � Ah, so f is continuous. Then we have 

x = lim xn = lim f(xn−1) = f( lim xn−1) = f(x). 
n→∞ n→∞ n→∞ 

So x is a fixed point of f(x). 

Solution/Proof of Problem 5. f �(0) exists because of the following: 
By definition, f �(0) = lim f (x)−f(0) . Since we have (f(x)−f (0))� 

= f �(x), and 
x 0 x (x)� →

the limit lim f �(x) = 3 exists, from L’Hospital rule, we know f �(0) = lim f(x)−f(0) 

x 0 x 0 x 

exists and 
→ 

f �(0) = lim f(x)−f (0) = 3. 
→ 

x 0 x → 

Solution/Proof of Problem 6. From Taylor’s theorem, we have 

1 
f(x) = f(x0) + f �(x0)(x − x0) + f (2)(x0)(x − x0)2 

2! 
1 1 

+ · · · +
(n − 1)! 

f (n−1)(x0)(x − x0)n−1 + 
n! 

f (n)(y)(x − x0)n , 

for some y ∈ (x, x0) or (x0, x). Then we have 

f(x) = f(x0) + 
n 
1
! 
f (n)(y)(x − x0)n ⇒ f (n)(y) = n! 

f(
( 
x

x 
) 
−
− 

x

f 

0 

(
) 
x0) 

. 
n 

We want to say that f (n)(y) has the same sign as f (n)(x0), but we have to be 
careful because f (n) need not be continuous. It may well be the case that there is 
a sequence zn approaching x0 such that f (n) (zn) does not go to f (n) (x0). Never
theless, we will show that if y(x) is the intermediate point in (x, x0) appearing in 
Taylors’s theorem, then as x x0, f (n) (y) f (n) (x0).→

The reason is that, as pointed out above, 
→ 

lim f (n)(y) = lim n! 
f(x) − f(x0) 

, 
x x0 x x0 (x − x0)n → → 

and we can compute the limit on the right by using L’Hôpital’s rule n − 1 times: 

lim n! 
f(x) − f(x0) = lim (n − 1)! 

f �(x)
= . . . = lim 

f (n−1) (x) 
x x0 (x − x0)n x x0 (x − x0)n−1 x x0 (x − x0)→ → → 

and then noticing that since f (n−1) (x0) = 0, this is equal to 

f (n−1) (x) − f (n−1) (x0) 
x 
lim 

x0 (x − x0)
= f (n−1) (x0) = A 

→ 

If A > 0, then f(
( 
x
x 
)− 

x
f 
0 

(
) 
x 
n 
0) > 0 in a neighborhood of x0. If n even, this implies −

f(x) − f(x0) > 0 for any element in the neighborhood of x0, i.e x0 is a local 
minimum. When n is odd, f does not have a local minimum or maximum. 

Similarly, if A < 0 and n even, then f(x) − f(x0) < 0 for any element in the 
neighborhood of x0, i.e x0 is a local maximum. When n is odd, f does not have a 
local minimum or maximum. 
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Solution/Proof of Problem 7. For x > 0 we have f (x) = x3 and hence f � (x) = 
3x2 and f �� (x) = 6x. For x < 0 we have f (x) = −x3 and hence f � (x) = −3x2 and 
f �� (x) = −6x. Notice that we can write, for x = 0� , 

f (x) = |x|x 2 , f � (x) = 3|x|x, f �� (x) = 6|x|. 
Hence at x = 0 we have 

f � (0) = lim 
f (h) − f (0) 

= lim 
|h h2 

= lim h h = 0 
h→0 h h→0 h

|
h→0 

| | 

f �� (0) = lim 
f � (h) − f � (0) 

= lim 
3|h|h 

= lim 3 h = 0 
h→0 h h→0 h h→0 

| | 

f ��� (0) = lim 
f �� (h) − f �� (0) 

= lim 
6|h| 

does not exist 
h 0 h h 0 h→ → 
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