SOLUTIONS TO PS 8

Xiaoguang Ma

Solution/Proof of Problem 1. From $f(x)=f\left(x^{2}\right)$, we have

$$
f(x)=f\left(x^{\frac{1}{2}}\right)=f\left(x^{\frac{1}{4}}\right)=\cdots=f\left(x^{\frac{1}{2 n}}\right)
$$

Now let $y_{n}=x^{\frac{1}{2 n}}$, and assume $x \neq 0$, so $\lim _{n \rightarrow \infty} y_{n}=1$. Since f is continuous, we have if $x \neq 0$

$$
f(x)=\lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f\left(\lim _{n \rightarrow \infty} y_{n}\right)=f(1)
$$

When $x=0$, then $f(0)=\lim _{y \rightarrow 0} f(y)=f(1)$.
Then f is a constant.
Solution/Proof of Problem 2. From MVT, we have $\forall x>0, \exists y=y(x) \in$ ($x, x+1$), s.t.

$$
g(x)=f(x+1)-f(x)=f^{\prime}(y) .
$$

Notice that $y>x$, so $\lim _{x \rightarrow \infty} y=\infty$, so we have

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f^{\prime}(y)=0
$$

since $\lim _{y \rightarrow \infty} f^{\prime}(y)=0$.
Solution/Proof of Problem 3. Consider the function

$$
g(x)=C_{0} x+\frac{C_{1} x^{2}}{2}+\cdots+\frac{C_{n} x^{n+1}}{n+1} .
$$

Then $g(0)=0$ and $g(1)=C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n}}{n+1}=0$. By the mean value theorem, we have that $g^{\prime}(y)=0$ for some $y \in(0,1)$, which means the equation $C_{0}+C_{1} x+$ $\cdots+C_{n} x^{n}$ has a root between 0 and 1 .

Solution/Proof of Problem 4. (a) Suppose f has two fixed point, $x_{1}<x_{2}$. Then by MVT we have that

$$
\exists y \in\left(x_{1}, x_{2}\right), \quad \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(y)
$$

Then $f^{\prime}(y)=1$ which is a contradiction.
(b) If f has a fixed point, then

$$
f(t)=t \Rightarrow t=t+\left(1+e^{t}\right)^{-1} \Rightarrow\left(1+e^{t}\right)^{-1}=0
$$

But we know that $e^{t}>0$ then $\left(1+e^{t}\right)^{-1} \neq 0$. So f has no fixed point.
(c)Consider a sequence defined by $x_{n}=f\left(x_{n-1}\right)$ for any $x_{1} \in \mathbb{R}$. Then we have

$$
\left|x_{n}-x_{n-1}\right|=\left|f\left(x_{n-1}\right)-f\left(x_{n-2}\right)\right|=\left|f^{\prime}(y)\right|\left|x_{n-1}-x_{n-2}\right| \leqslant A\left|x_{n-1}-x_{n-2}\right| .
$$

By using $|x-z| \leqslant|x-y|+|y-z|$, we have
$\left|x_{n}-x_{m}\right| \leqslant\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \leqslant\left(\sum_{i=m-1}^{n-2} A^{i}\right)\left|x_{2}-x_{1}\right|$.

Since $A<1$, the series $\sum A^{i}$ converges, and so the partial sums form a Cauchy sequence. This inequality shows that $\left\{x_{n}\right\}$ is also a Cauchy sequence and hence converges.

Notice that $|f(x+h)-f(x)| \leqslant A h$, so f is continuous. Then we have

$$
x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} f\left(x_{n-1}\right)=f\left(\lim _{n \rightarrow \infty} x_{n-1}\right)=f(x) .
$$

So x is a fixed point of $f(x)$.
Solution/Proof of Problem 5. $f^{\prime}(0)$ exists because of the following:
By definition, $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$. Since we have $\frac{(f(x)-f(0))^{\prime}}{(x)^{\prime}}=f^{\prime}(x)$, and the limit $\lim _{x \rightarrow 0} f^{\prime}(x)=3$ exists, from L'Hospital rule, we know $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$ exists and $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=3$.

Solution/Proof of Problem 6. From Taylor's theorem, we have

$$
\begin{aligned}
f(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2} \\
& +\cdots+\frac{1}{(n-1)!} f^{(n-1)}\left(x_{0}\right)\left(x-x_{0}\right)^{n-1}+\frac{1}{n!} f^{(n)}(y)\left(x-x_{0}\right)^{n}
\end{aligned}
$$

for some $y \in\left(x, x_{0}\right)$ or $\left(x_{0}, x\right)$. Then we have

$$
f(x)=f\left(x_{0}\right)+\frac{1}{n!} f^{(n)}(y)\left(x-x_{0}\right)^{n} \Rightarrow f^{(n)}(y)=n!\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}} .
$$

We want to say that $f^{(n)}(y)$ has the same sign as $f^{(n)}\left(x_{0}\right)$, but we have to be careful because $f^{(n)}$ need not be continuous. It may well be the case that there is a sequence z_{n} approaching x_{0} such that $f^{(n)}\left(z_{n}\right)$ does not go to $f^{(n)}\left(x_{0}\right)$. Nevertheless, we will show that if $y(x)$ is the intermediate point in $\left(x, x_{0}\right)$ appearing in Taylors's theorem, then as $x \rightarrow x_{0}, f^{(n)}(y) \rightarrow f^{(n)}\left(x_{0}\right)$.

The reason is that, as pointed out above,

$$
\lim _{x \rightarrow x_{0}} f^{(n)}(y)=\lim _{x \rightarrow x_{0}} n!\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}}
$$

and we can compute the limit on the right by using L'Hôpital's rule $n-1$ times:

$$
\lim _{x \rightarrow x_{0}} n!\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}}=\lim _{x \rightarrow x_{0}}(n-1)!\frac{f^{\prime}(x)}{\left(x-x_{0}\right)^{n-1}}=\ldots=\lim _{x \rightarrow x_{0}} \frac{f^{(n-1)}(x)}{\left(x-x_{0}\right)}
$$

and then noticing that since $f^{(n-1)}\left(x_{0}\right)=0$, this is equal to

$$
\lim _{x \rightarrow x_{0}} \frac{f^{(n-1)}(x)-f^{(n-1)}\left(x_{0}\right)}{\left(x-x_{0}\right)}=f^{(n-1)}\left(x_{0}\right)=A
$$

If $A>0$, then $\frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}}>0$ in a neighborhood of x_{0}. If n even, this implies $f(x)-f\left(x_{0}\right)>0$ for any element in the neighborhood of x_{0}, i.e x_{0} is a local minimum. When n is odd, f does not have a local minimum or maximum.

Similarly, if $A<0$ and n even, then $f(x)-f\left(x_{0}\right)<0$ for any element in the neighborhood of x_{0}, i.e x_{0} is a local maximum. When n is odd, f does not have a local minimum or maximum.

Solution/Proof of Problem 7. For $x>0$ we have $f(x)=x^{3}$ and hence $f^{\prime}(x)=$ $3 x^{2}$ and $f^{\prime \prime}(x)=6 x$. For $x<0$ we have $f(x)=-x^{3}$ and hence $f^{\prime}(x)=-3 x^{2}$ and $f^{\prime \prime}(x)=-6 x$. Notice that we can write, for $x \neq 0$,

$$
f(x)=|x| x^{2}, \quad f^{\prime}(x)=3|x| x, \quad f^{\prime \prime}(x)=6|x| .
$$

Hence at $x=0$ we have

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h| h^{2}}{h}=\lim _{h \rightarrow 0}|h| h=0 \\
f^{\prime \prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-f^{\prime}(0)}{h}=\lim _{h \rightarrow 0} \frac{3|h| h}{h}=\lim _{h \rightarrow 0} 3|h|=0 \\
f^{\prime \prime \prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(h)-f^{\prime \prime}(0)}{h}=\lim _{h \rightarrow 0} \frac{6|h|}{h} \text { does not exist }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

