18.100B Problem Set 8

Due Thursday November 9, 2006 by 3 PM

Problems:

1) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous, and suppose

$$
f\left(x^{2}\right)=f(x)
$$

holds for every $x \geq 0$. Prove that f has to be a constant function.
Hint: Show that $f(0)=f(x)$ if $0 \leq x<1$, and $f(1)=f(x)$ if $x \geq 1$.
2) Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$. Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow+\infty$.
3) If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,
$$

where C_{0}, \ldots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .
4) Suppose f is a real function defined on \mathbb{R}. We call $x \in \mathbb{R}$ a fixed point of f if $f(x)=x$.
a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every real t, prove that f has at most one fixed point.
b) Show that the function f defined by

$$
f(t)=t+\left(1+e^{t}\right)^{-1}
$$

has no fixed point, although $0<f^{\prime}(t)<1$ for all real t.
c) However, if there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t, prove that a fixed point x of f exists, and that $x=\lim x_{n}$, where x_{1} is an arbitrary real number and

$$
x_{n+1}=f\left(x_{n}\right)
$$

for $n=1,2,3, \ldots$
5) Let f be a continuous real function on \mathbb{R}, of which it is known that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follow that $f^{\prime}(0)$ exists?
6) Let f be a real function on $[a, b]$ and suppose $n \geq 2$ is an integer, $f^{(n-1)}$ is continuous on $[a, b]$, and $f^{(n)}(x)$ exists for all $x \in(a, b)$. Moreover, assume there exists $x_{0} \in(a, b)$ such that

$$
f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0, \quad f^{(n)}\left(x_{0}\right)=A \neq 0 .
$$

Prove the following criteria: If n is even, then f has a local minimum at x_{0} when $A>0$, and f has a local maximum at x_{0} when $A<0$. If n is odd, then f does not have a local minimum or maximum at x_{0}. Hint: Use Taylor's theorem.
7) For $f(x)=|x|^{3}$, compute $f^{\prime}(x), f^{\prime \prime}(x)$ for all real x, and show that $f^{(3)}(0)$ does not exist.

Extra problems:

1) Let $I \subseteq \mathbb{R}$ be an open interval. A function $f: I \rightarrow \mathbb{R}$ is called Hölder continuous of order $\alpha>0$ if there is constant $C>0$ such that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

holds for all $x, y \in I$.
a) Show that any Hölder continuous function is uniformly continuous.
b) Prove that $f(x)=\sqrt{|x|}$ defined on $I=\mathbb{R}$ is Hölder continuous of order $\alpha=1 / 2$.
c) Prove that Hölder continuity of order α implies Hölder continuity of order $0<\beta \leq \alpha$, provided that I is bounded. What happens if I is unbounded?
d) Show that if f is Hölder continuous of order $\alpha>1$, then f has to be constant.
2) Let $a \in \mathbb{R}$, and suppose $f:(a, \infty) \rightarrow \mathbb{R}$ is a twice-differentiable. Define

$$
M_{0}=\sup _{a<x<\infty}|f(x)|, \quad M_{1}=\sup _{a<x<\infty}\left|f^{\prime}(x)\right|, \quad M_{2}=\sup _{a<x<\infty}\left|f^{\prime \prime}(x)\right|
$$

which we assume to be finite numbers. Prove the inequality

$$
M_{1}^{2} \leq 4 M_{0} M_{2}
$$

Hint: If $h>0$, Taylor's theorem shows that

$$
f^{\prime}(x)=\frac{1}{2 h}[f(x+2 h)-f(x)]-h f^{\prime \prime}(\xi)
$$

for some $\xi \in(x, x+2 h)$. Hence

$$
\left|f^{\prime}(x)\right| \leq h M_{2}+\frac{M_{0}}{h}
$$

To show that $M_{1}^{2}=4 M_{0} M_{2}$ can actually happen, take $a=-1$, define

$$
f(x)= \begin{cases}2 x^{2}-1 & \text { if }-1<x<0 \\ \frac{x^{2}-1}{x^{2}+1} & \text { if } 0 \leq x<\infty\end{cases}
$$

and show that $M_{0}=1, M_{1}=4, M_{2}=4$.
3) Suppose f is a real, three times differentiable function on $[-1,1]$, such that

$$
f(-1)=0, \quad f(0)=0, \quad f(1)=1, \quad f^{\prime}(0)=0
$$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in(-1,1)$.
Hint: Use Taylor's theorem, to show that there exist $s \in(0,1)$ and $t \in(-1,0)$ such that

$$
f^{(3)}(s)+f^{(3)}(t)=6
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

