18.100B Problem Set 7 Solutions
 Sawyer Tabony

1) We have $a_{i}>0$ and $a_{i+1} \leq a_{i}$ for all $i=0,1,2, \ldots$, and $\lim _{i \rightarrow \infty} a_{i}=0$, and we want to show the convergence of

$$
\sum_{i=0}^{\infty}(-1)^{i} a_{i}=a_{0}-a_{1}+a_{2}-\ldots
$$

So we define s_{n} to be the partial sums of the first $n+1$ terms of the sum:

$$
s_{n}=\sum_{i=0}^{n}(-1)^{i} a_{i}
$$

So for any $k \in \mathbb{N}$, we have $s_{2 k}-s_{2 k-2}=(-1)^{2 k-1} a_{2 k-1}+(-1)^{2 k} a_{2 k}=a_{2 k}-a_{2 k-1} \leq 0$ by the monotonicity of a_{n}. Therefore $s_{2 k} \leq s_{2 k-2}$, so $s_{2 k}$ is decreasing. Similarly, $s_{2 k-1}$ is increasing. Also, $s_{2 k}-s_{2 k-1}=(-1)^{2 k} a_{2 k}=a_{2 k}>0$, so $s_{2 k}>s_{2 k-1}$. These combine to give $s_{2 k-1}<s_{2 k^{\prime}}$ for any $k, k^{\prime}=0,1,2, \ldots$, since choosing $N>\max \left\{k, k^{\prime}\right\}$, we have

$$
s_{2 k-1} \leq s_{2 N-1}<s_{2 N} \leq s_{2 k^{\prime}}
$$

So $s_{2 k}$ and $s_{2 k-1}$ are both monotonic and bounded, so they each converge. However, $s_{2 k}-s_{2 k-1}=$ $a_{2 k} \longrightarrow 0$, so they must converge to the same limit. Therefore s_{n} converges, so the sum is convergent.
2) Our function f is defined on $(0,1)$ by

$$
f= \begin{cases}\frac{1}{q} & \text { if, in lowest terms, } x=\frac{p}{q} \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

First we show f is discontinuous at every rational. For $r=\frac{p}{q} \in \mathbb{Q}$ (in lowest terms), let $\varepsilon=\frac{1}{2 q}$. Then for any $\delta>0, \exists x \notin \mathbb{Q}$ with $r<x<r+\delta$, so $|f(r)-f(x)|=\left|\frac{1}{q}-0\right|=\frac{1}{q}>\frac{1}{2 q}=\varepsilon$. This proves discontinuity at r.

Now we want to show continuity at irrationals, so let $x \notin \mathbb{Q}, 0<x<1$. Given $\varepsilon>0$, we need to find a $\delta>0$ such that for every y with $|x-y|<\delta,|f(x)-f(y)|<\varepsilon$. Since $f(x)=0$ and $f(y) \geq 0$, we need $f(y)<\varepsilon$. But $\varepsilon>0$ means we can find $N \in \mathbb{N}$ with $\frac{1}{N}<\varepsilon$. So $|f(y)|>\varepsilon$ means y, when written in lowest terms, has denominator smaller than N. But there are only finitely many fractions with denominator less than N between 0 and 1 , so for some $M,\left\{y_{i}\right\}_{i=1}^{M}=\{y \in(0,1) \mid f(y)>\varepsilon\}$. So we let $\delta=\min _{1 \leq i \leq M}\left|x-y_{i}\right|$, which exists and is greater than 0 since there are only finitely many y_{i}. Then if $y \in(0,1)$ is such that $|x-y|<\delta, y \neq y_{i}$ $\forall i \in\{1,2, \ldots, M\}$, so $f(y)<\varepsilon$. Therefore f is continuous at x.
3) We have $f, g: \mathcal{M} \longrightarrow \mathcal{N}$, and $\mathcal{Q} \subseteq \mathcal{M}$ is dense.
a) We need to show $f(\mathcal{Q})$ is dense in $f(\mathcal{M})$. So let $K \subseteq \mathcal{N}$ be closed, with $f(\mathcal{Q}) \subseteq K$. Then by continuity of $f, f^{-1}(K)$ is closed, and $f^{-1}(K)$ contains $f^{-1}(f(\mathcal{Q})) \supseteq \mathcal{Q}$. Since \mathcal{Q} is dense in $\mathcal{M}, f^{-1}(K)=\mathcal{M}$. Hence $f(\mathcal{M}) \subseteq K$, so $f(\mathcal{Q})$ is dense in $f(\mathcal{M})$.
b) Now we have $f=g$ on \mathcal{Q}. Now consider the function $\phi: \mathcal{M} \longrightarrow \mathbb{R}$, with

$$
\phi(x)=d_{\mathcal{N}}(f(x), g(x))
$$

for $d_{\mathcal{N}}$ the distance function on \mathcal{N}. Since $d_{\mathcal{N}}, f$, and g are all continuous, ϕ is also continuous. Therefore $\phi^{-1}(0)$ is a closed set in \mathcal{M}. But since $f=g$ on \mathcal{Q},

$$
\forall x \in \mathcal{Q}, f(x)=g(x) \Longrightarrow \phi(x)=d_{\mathcal{N}}(f(x), g(x))=0
$$

Thus $\mathcal{Q} \subseteq \phi^{-1}(0)$, which is closed, so by density,

$$
\phi^{-1}(0)=\mathcal{M} \Longrightarrow \forall x \in \mathcal{M}, 0=\phi(x)=d_{\mathcal{N}}(f(x), g(x)) \Longrightarrow f(x)=g(x)
$$

4) a) So we must find a continuous $f: E \longrightarrow \mathbb{R}$ with $E \subseteq \mathbb{R}$ bounded and $f(E)$ unbounded. Let

$$
E=(0,1), f(x)=\frac{1}{x}
$$

So E is clearly bounded, $f(E)=(1, \infty)$ is unbounded, and f is continuous: at $x \in(0,1)$, given $\varepsilon>0$, let $\delta=\min \left\{\frac{x}{2}, \frac{1}{3} x^{2} \varepsilon\right\}>0$. Then

$$
f(x-\delta)-f(x)=\frac{1}{x-\delta}-\frac{1}{x}=\frac{\delta}{x(x-\delta)} \leq \frac{\frac{1}{3} x^{2} \varepsilon}{x\left(\frac{x}{2}\right)}=\frac{2}{3} \varepsilon<\varepsilon
$$

And similarly, $f(x)-f(x+\delta)<\varepsilon$. Since f is monotonically decreasing, this shows f is continuous.
b) Now we have that f is uniformly continuous, and E is bounded. So for $\varepsilon=1, \exists \delta>0$ such that $\forall x, y \in E$, if $|x-y|<\delta,|f(x)-f(y)|<1$. E is bounded, so let $B \in \mathbb{N}$ such that $E \subseteq[-B, B]$. Then we can divide $[-B, B]$ into $\left\lceil\frac{4 B}{\delta}\right\rceil$ closed intervals of length $\frac{\delta}{2}$, say I_{i} for $i=1,2, \ldots, M$. Then choose $x_{i} \in I_{i} \cap E$, when $I_{i} \cap E \neq \emptyset$. Let $C=\max _{i}\left\{\left|f\left(x_{i}\right)\right|\right\}+1$. Then for any $x \in E$, $x \in I_{i}$ for some i, so $\left|x-x_{i}\right| \leq \frac{\delta}{2}<\delta$. Thus, $\left|f(x)-f\left(x_{i}\right)\right|<1$, so $|f(x)|<1+\left|f\left(x_{i}\right)\right| \leq C$. So C bounds $f(E)$.
c) This is the easiest one: let $E=\mathbb{R}$, and $f(x)=x$. Then f is uniformly continuous by choosing $\delta=\varepsilon$, since $|f(x)-f(y)|=|x-y|$, but $E=f(E)=\mathbb{R}$ are both unbounded.
5) $f: \mathcal{M} \longrightarrow \mathcal{N}$ is a uniformly continuous map between metric spaces.
a) We need to show that f preserves Cauchy sequences. So we are given that $\left(x_{n}\right)$ is Cauchy. To show $\left(f\left(x_{n}\right)\right)$ is Cauchy, let $\varepsilon>0$. Then by uniform continuity, $\exists \delta>0$ such that if $x, y \in \mathcal{M}$ with $d_{\mathcal{M}}(x, y)<\delta$, then $d_{\mathcal{N}}(f(x), f(y))<\varepsilon$. Since $\left(x_{n}\right)$ is Cauchy, $\exists N \in \mathbb{N}$ such that $\forall n, m>N, d_{\mathcal{M}}\left(x_{n}, x_{m}\right)<\delta$. Therefore, $d_{\mathcal{N}}\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)<\varepsilon$, for all $n, m>N$. So $\left(f\left(x_{n}\right)\right)$ is Cauchy.
b) We have $g(x)=x^{2}$ on \mathbb{R}. g is continuous, so given a Cauchy sequence $\left(x_{n}\right)$ in \mathbb{R}, it converges by the completeness of \mathbb{R}, so $\left(g\left(x_{n}\right)\right)$ is convergent by the continuity of g, so it is Cauchy. But
g is not uniformly continuous: for any $\delta>0$, letting $x=\frac{1}{\delta}$ we have

$$
g\left(x+\frac{\delta}{2}\right)^{2}-g(x)=\left(x^{2}+1+\frac{\delta^{2}}{4}\right)-x^{2}>1
$$

So for $\varepsilon=1$, no δ exists that satisfies uniform continuity on all of \mathbb{R}.
6) We have defined

$$
d_{E}(x)=\inf _{z \in E} d(x, z)
$$

and we want to show that

$$
\left|d_{E}(x)-d_{E}(y)\right| \leq d(x, y)
$$

So fix $\varepsilon>0$. Then $\exists z_{0} \in E$ with $d(x, z)<d_{E}(x)+\varepsilon$. Then $d(y, z) \leq d(x, z)+d(x, y)<$ $d_{E}(x)+\varepsilon+d(x, y)$ by the triangle inequality. Therefore,

$$
d_{E}(y)=\inf _{z \in E} d(y, z) \leq d_{E}(x)+\varepsilon+d(x, y) \Longrightarrow d_{E}(y)-d_{E}(x) \leq d(x, y)+\varepsilon
$$

for any $\varepsilon>0$. So $d_{E}(y)-d_{E}(x) \leq d(x, y)$. By symmetry, $d_{E}(x)-d_{E}(y) \leq d(x, y)$, so

$$
\left|d_{E}(x)-d_{E}(y)\right| \leq d(x, y)
$$

Uniform continuity follows immediately by letting $\delta=\varepsilon$.
7) So now we have $K, F \subseteq \mathcal{M}$, with $K \cap F=\emptyset, F$ closed and K compact. By the previous exercise, d_{F} is uniformly continuous, and thus continuous, positive function on K. Therefore d_{F} attains its minimum on K, by compactness. So $\exists x \in K$ with $d_{F}(x)=\inf _{y \in K} d_{F}(y)$. Suppose this infimum is 0 . Thus $d_{F}(x)=0$, so x is a limit point of F. But F is closed, so $x \in F \Longrightarrow x \in K \cap F=\emptyset$, a contradiction. Therefore $\inf _{y \in K} d_{F}(y)=\delta>0$. Therefore $\forall p \in K, q \in F, d(p, q)>\frac{\delta}{2}>0$.

This doesn't hold for arbitrary $K, F \subseteq \mathcal{M}$ closed. For a counterexample, take $\mathcal{M}=\mathbb{R}^{2}$ and look at

$$
K=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}, F=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq \frac{1}{x}\right\}
$$

Both are closed, and for any $\delta>0$, for $N>\frac{1}{\delta},(N, 0) \in K$ and $\left(N, \frac{1}{N}\right) \in F$, and the distance betweent these is $\frac{1}{N}<\delta$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

