18.100B Problem Set 7

Due Friday November 3, 2006 by 3 PM

Problems:

1) Consider an infinite series with alternating signs

$$
a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\ldots=\sum(-1)^{n} a_{n}
$$

Prove the Leibnitz criteria for convergence:
If $a_{i}>0$ for all $i, a_{i+1} \leq a_{i}$ and $\lim _{i \rightarrow \infty} a_{i}=0$, then the series converges. Notice that this applies to the series $\sum \pm \frac{1}{n}$ which is not absolutely convergent.
(Hint: Show that $s_{1} \leq s_{3} \leq s_{5} \leq \ldots \leq s_{4} \leq s_{2} \leq s_{0}$ and $\left|s_{n+k}-s_{n}\right| \leq a_{n+1}$.)
2) We say that a rational number $r>0$ is written in reduced form $r=p / q$ if p and q are positive integers with no common factor. Consider the function defined on $(0,1)$ by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ \frac{1}{q} & \text { if } x=p / q \text { in reduced form }\end{cases}
$$

Prove that f is continuous at every irrational x, but discontinuous at every rational x. (Notice this shows that a function can be continuous at a point without being continuous in any neighborhood of that point.)
3) Let f and g be continuous mappings of a metric space \mathcal{M} into a metric space \mathcal{N}, and let $Q \subseteq \mathcal{M}$ be a dense subset of \mathcal{M}.
a) Prove that $f(Q)$ is dense in $f(\mathcal{M})$.
b) Show that if $f(x)=g(x)$ for every $x \in Q$, then $f(x)=g(x)$ for every $x \in \mathcal{M}$.
4) Suppose that $f: E \rightarrow \mathbb{R}$ is a continuous map from some subset $E \subseteq \mathbb{R}$.
a) Show that it is possible to have E bounded and $f(E)$ unbounded.
b) Show that if f is uniformly continuous and E is bounded, then $f(E)$ must be bounded.
c) Show that it is possible to have f uniformly continuous, E unbounded, and $f(E)$ unbounded.
5) Suppose that $f: \mathcal{M} \rightarrow \mathcal{N}$ is a uniformly continuous mapping between metric spaces.
a) Prove that if $\left(x_{n}\right)$ is a Cauchy sequence in \mathcal{M}, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathcal{N}.
b) Use the function $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$ to show that it is possible for a continuous function to send Cauchy sequences to Cauchy sequences without being uniformly continuous.
6) Let E be a non-empty subset of a metric space \mathcal{M}, define the distance from $x \in X$ to E by

$$
d_{E}(x)=\inf _{z \in E} d(x, z)
$$

Prove that d_{E} is a uniformly continuous function on X, by showing that

$$
\left|d_{E}(x)-d_{E}(y)\right| \leq d(x, y) .
$$

7) Suppose K and F are disjoint subsets of \mathcal{M}, such that F is closed and K is compact. Prove that there exists a $\delta>0$ such that $d(p, q)>\delta$ whenever $p \in F$ and $q \in K$. Show that the conclusion can fail if we only assumed that K was closed, instead of compact.
(Hint: d_{F} is a continuous positive function on K)

Extra problems:

1) Suppose X, Y, and Z are metric spaces, and Y is compact. Let

$$
X \xrightarrow{f} Y \xrightarrow{g} X
$$

and assume that g is one-to-one.
a) Show that if g is continuous and $g \circ f$ is continuous then f is continuous.
b) Show that if g is continuous and $g \circ f$ is uniformly continuous then f is uniformly continuous.
c) Show that compactness of Y is necessary, even if X and Z are compact.
2) A real-valued function f defined in (a, b) is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for any $x, y \in(a, b)$ and $\lambda \in(0,1)$.
a) Prove that a convex function is automatically continuous.
b) Prove that every increasing convex function of a convex function is convex.
c) Assume g is a continuous real function defined on (a, b) and satisfying

$$
g\left(\frac{x+y}{2}\right) \leq \frac{g(x)+g(y)}{2}
$$

for all $x, y \in(a, b)$. Prove that g is convex.
3) In class we showed that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is uniformly continuous. Prove this by either:
a) Assume it is false, so for some ε no choice of δ works everywhere. Find, for each $n \in \mathbb{N}$ a point x_{n} where $\delta=\frac{1}{n}$ does not work. Extract a convergent subsequence, $\left(x_{n_{k}}\right)$ and derive a contradiction from the convergence of $\left(f\left(x_{n_{k}}\right)\right)$.
b) Fix $\varepsilon>0$, and for each $x \in[a, b]$ let $\delta(x)$ be the length of the largest open interval I centered at x such that $|f(z)-f(y)| \leq \varepsilon$ whenever $z, y \in I$ (really $\delta(x)$ is defined as a supremum of course). Show that $\delta(x)>0$ and $\delta(x)$ is continuous. Because $[a, b]$ is compact, $\delta(x)$ must achieve a minimum, say δ_{0}. Show that δ_{0} works in the definition of uniform continuity.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

