SOLUTIONS TO PS6

Xiaoguang Ma

Solution/Proof of Problem 1. Since $\sum\left|a_{n}\right|$ converges, $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. So $\exists N \in$ \mathbb{N} such that for $n \geqslant N,\left|a_{n}\right|<1$. Thus for $n \geq N$ we have $\left|a_{n}^{2}\right| \leq\left|a_{n}\right|$ and by the comparison theorem and the convergence of $\sum\left|a_{n}\right|$ we conclude that $\sum\left|a_{n}^{2}\right|$ converges.

Solution/Proof of Problem 2. Notice that

$$
\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)
$$

so

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n(n+1)(n+2)} & =\sum_{n=1}^{m} \frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right) \\
& =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{(m+1)(m+2)}\right)
\end{aligned}
$$

Then $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}=\frac{1}{4}$.

Solution/Proof of Problem 3.

a) $\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}(\sqrt{k+1}-\sqrt{k})=\sum_{k=1}^{n} \sqrt{k+1}-\sum_{k=1}^{n} \sqrt{k}=\sum_{k=2}^{n+1} \sqrt{k}-\sum_{k=1}^{n} \sqrt{k}=$ $\sqrt{n+1}-1$, so diverges.
b) Notice that

$$
\frac{\sqrt{n+1}-\sqrt{n}}{n}=\frac{1}{n(\sqrt{n+1}+\sqrt{n})}<\frac{1}{2 n \sqrt{n}}
$$

and $\sum \frac{1}{2 n \sqrt{n}}$ converges, hence by the comparison theorem so does $\sum \frac{\sqrt{n+1}-\sqrt{n}}{n}$
c) When $\alpha>1$, we have $\sum_{k=1}^{n} \frac{1}{\alpha^{k}}$ converges. So $\sum_{k=1}^{n} \frac{1}{1+\alpha^{n}}$ is an increasing bounded sequence, so it converges.

When $\alpha \leqslant 1$, we have $\sum_{k=1}^{n} \frac{1}{1+\alpha^{k}} \geqslant \sum_{k=1}^{n} \frac{1}{2}=\frac{n(n+1)}{2}$, so $\sum_{k=1}^{n} \frac{1}{1+\alpha^{n}}$ diverges.
Solution/Proof of Problem 4. The Cauchy-Schwarz inequality tells us that

$$
\left|\sum_{k=1}^{n} \sqrt{a_{k}} \frac{1}{k}\right| \leq\left(\sum_{k=1}^{n}\left(\sqrt{a_{k}}\right)^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{2}\right)^{\frac{1}{2}}
$$

and since both $\sum a_{k}$ and $\sum \frac{1}{k^{2}}$ converge, we know that $\sum_{k=1}^{n} \frac{\sqrt{a_{k}}}{k}$ is a bounded increasing sequence, hence it must converge.

Solution/Proof of Problem 5. Notice that $\sum a_{n}$ converges so $\lim _{n \rightarrow \infty} a_{n}=0$ and since a_{n} is decreasing this implies $a_{n} \geq 0$.

Now since

$$
\sum_{k=n+1}^{2 n} a_{k} \geqslant n a_{2 n} \geqslant 0
$$

take limits on both side, we have $\lim _{n \rightarrow \infty} n a_{2 n}=0$ i.e. $\lim _{2 n \rightarrow \infty} 2 n a_{2 n}=0$. Similarly, we can prove $\lim _{2 n+1 \rightarrow \infty}(2 n+1) a_{2 n+1}=0$. So

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

Solution/Proof of Problem 6.

1) First note that, for any function f and any set $B \subseteq Y$, it is always true that $X=f^{-1}(B) \cup f^{-1}\left(B^{c}\right)$, and since these sets are disjoint, we always have $f^{-1}\left(B^{c}\right)=f^{-1}(B)^{c}$.

(a) \Longleftrightarrow (b)

Suppose (a) is true and B is closed in Y, then B^{c} is open in Y and (a) implies $f^{-1}\left(B^{c}\right)=f^{-1}(B)^{c}$ open in X and hence $f^{-1}(B)$ is open in X. This proves $(a) \Longrightarrow(b)$, and exchanging the words open and closed we get a proof that $(b) \Longrightarrow(a)$.
2) Note that for any function f and any sets $A \subseteq X, B \subseteq Y$ we always have

$$
A \subseteq f^{-1}(f(A)), \quad f\left(f^{-1}(B)\right) \subseteq B
$$

The first inclusion is an equality precisely when f is one-to-one, while the second is an equality precisely when f is onto. (So for instance if f is constant and X and Y have more than one point, both inclusions are strict in general.)
(b) \Longrightarrow (c)

Suppose (b) is true and let A be any subset of X. We know that

$$
A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})
$$

and that $f^{-1}(\overline{f(A)})$ is closed, hence $\bar{A} \subseteq f^{-1}(\overline{f(A)})$ and so

$$
f(\bar{A}) \subseteq f\left(f^{-1}(\overline{f(A)})\right) \subseteq \overline{f(A)}
$$

and (c) is true.
$(\mathrm{c}) \Longrightarrow(\mathrm{b})$
Now suppose (c) is true, and $B \subseteq Y$ is closed. We can apply (c) to $A:=$ $f^{-1}(B)$ and get

$$
f(\bar{A}) \subseteq \overline{f(A)} \Longleftrightarrow f\left(\overline{f^{-1}(B)}\right) \subseteq \overline{f\left(f^{-1}(B)\right)}
$$

As mentioned above, $f\left(f^{-1}(B)\right) \subseteq B$ so we have

$$
f\left(\overline{f^{-1}(B)}\right) \subseteq \overline{f\left(f^{-1}(B)\right)} \subseteq \bar{B}=B
$$

hence

$$
\overline{f^{-1}(B)} \subseteq f^{-1}\left(f\left(\overline{f^{-1}(B)}\right)\right) \subseteq f^{-1}(B)
$$

which implies $f^{-1}(B)$ is closed, i.e. (b) is true.

Solution/Proof of Problem 7. Consider the function

$$
f(x)=\left\{\begin{array}{lc}
0 & \text { if } x=0 \\
1 & \text { if } x \neq 0
\end{array}\right.
$$

Then it is easy to see that $f(x)$ is not continuous at the point $x=0$. But it satisfies the condition in the problem. So that condition does NOT imply f continuous.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

