18.100B Problem Set 6

Due Friday October 27, 2006 by 3 PM

Problems:

1) Prove that if $\sum\left|a_{n}\right|$ is converges, then $\sum\left|a_{n}\right|^{2}$ also converges.
2) Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}=\frac{1}{4} .
$$

Hint: Use a "telescope trick", i. e. an argument of the form $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)=b_{1}$.
3) Investigate the behavior (convergence and divergence) of $\sum_{n=1}^{\infty} a_{n}$ if
a) $a_{n}=\sqrt{n+1}-\sqrt{n}$
b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
c) $a_{n}=\frac{1}{1+\alpha^{n}} \quad$ where $\alpha \geq 0$ is some fixed number.
4) Show that convergence of $\sum_{n=1}^{\infty} a_{n}$ with $a_{n} \geq 0$ implies convergence of

$$
\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n} .
$$

Hint: Cauchy-Schwarz inequality.
5) Assume $a_{0} \geq a_{1} \geq a_{2} \geq \cdots$ and suppose that $\sum a_{n}$ converges. Prove that

$$
\lim _{n \rightarrow \infty}\left(n a_{n}\right)=0 .
$$

Hint: Use and show the inequality $n a_{2 n} \leq \sum_{k=n+1}^{2 n} a_{k}$.
6) If X and Y are metric spaces and $f: X \rightarrow Y$ is a mapping between them, show that the following statements are equivalent:
a) $f^{-1}(B)$ is open in X whenever B is open in Y.
b) $f^{-1}(B)$ is closed in X whenever B is closed in Y.
c) $f(\bar{A}) \subseteq \overline{f(A)}$ for every subset A of X.
7) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0
$$

for every $x \in \mathbb{R}$. Does this imply that f is continuous?

Extra problems:

1) Consider the non-absolutetly convergent series

$$
\sum_{k=1}^{\infty} a_{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

Find a rearrangement $\sum_{n=1}^{\infty} a_{k_{n}}$ that diverges to $+\infty$.
2) Let $\left(p_{k}\right)=(2,3,5,7,11, \ldots)$ be the sequence of prime numbers. Prove that the series

$$
\sum_{k=1}^{\infty} \frac{1}{p_{k}}
$$

diverges, for instance, by working out the details of the following argument.
Suppose $\sum \frac{1}{p_{k}}$ converges. Then, there is an integer ℓ such that

$$
\sum_{k=\ell+1}^{\infty} \frac{1}{p_{k}}=\sum_{k=1}^{\infty} \frac{1}{p_{k+\ell}}<\frac{1}{2} .
$$

Next, for any given $x \geq 0$, we let $N(x)$ be the number of positive integers $n \leq x$ that are not divisible by any prime p_{k} with $k>\ell$. By writing $n=k m^{2}$ with k square-free (which can be done with any integer), prove that

$$
N(x) \leq 2^{\ell} \sqrt{x} \text { and conclude that } \frac{x}{2}<N(x)<2^{\ell} \sqrt{x} \text {. }
$$

This is a contradiction whenever $x \geq 2^{2 \ell+2}$ holds.
Trivia: As an amusing fact, we remark that the series
(*)

$$
\sum_{k=1}^{\infty}\left(\frac{1}{p_{k}}+\frac{1}{q_{k}}\right)=\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{11}+\frac{1}{13}\right)+\left(\frac{1}{17}+\frac{1}{19}\right)+\left(\frac{1}{29}+\frac{1}{31}\right)+\cdots
$$

is known to converge. Here (p_{k}, q_{k}) runs over the pairs of twin primes; that is, p_{k} and q_{k} are both prime and $q_{k}=p_{k}+2$. This result was proved by V. Brun in 1919, and it is known today (by numerics) that the value of the series is ≈ 1.902.

Had this series (*) diverged, we would have a proof of the twin prime conjecture which means that there are infinitely many twin primes (this is still not known!). Also, if we knew that the value of $(*)$ were an irrational number, then the twin prime conjecture would follow immediately.
3) Let $\left(p_{k}\right)$ be the sequence of prime numbers, and let J_{N} denote the set of natural numbers whose factorization into primes only involves the primes $\left\{p_{k}: 1 \leq k \leq N\right\}$. Prove the following identity

$$
\sum_{n \in J_{N}} \frac{1}{n^{s}}=\prod_{k=1}^{N} \frac{1}{1-p_{k}^{-s}}
$$

for any $N \in \mathbb{N}$ and any $s \in \mathbb{Q} \cap(1, \infty)$. From this deduce Euler's formula

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\lim _{N \rightarrow \infty} \prod_{k=1}^{N} \frac{1}{1-p_{k}^{-s}}\left(=: \prod_{k=1}^{\infty} \frac{1}{1-p_{k}^{-s}}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

