18.100B Problem Set 5 Solutions Sawyer Tabony

1) We have $X \subseteq \mathcal{M}$, with \mathcal{M} complete. X is complete if and only if every Cauchy sequence of X converges to some $x \in X$. Let (x_i) be Cauchy, with $x_i \in X$. \mathcal{M} being complete implies that $x_i \to y \in \mathcal{M}$. Therefore y is a limit point of X. So if X is closed, $y \in X$, so every Cauchy sequence converges in X, so X is complete.

Conversely, suppose X is complete. Therefore every Cauchy sequence of X converges to a point in X. If $y \in X'$, then we can choose a sequence $(x_i) \subseteq X$ with $d(x_i, y) < \frac{1}{i}$, and since this converges to y in \mathcal{M} , it is Cauchy in X. Thus by completeness it converges in X, and by the uniqueness of limits, $y \in X$. Therefore $X' \subseteq X$, so X is closed.

- 2) First, we know that if a sequence converges to some limit L, every subsequence of that sequence converges to L. This implies the "only if" (\Rightarrow) of both (a) and (b).
 - a) To prove the "if" (\Leftarrow) of a), assume the sequences (x_{2n}) and (x_{2n-1}) both converge to the limit L. Then given $\varepsilon > 0$ we can find natural numbers N and N' such that for

$$n > N, n' > N' \implies |x_{2n} - L| < \varepsilon \text{ and } |x_{2n'-1} - L| < \varepsilon.$$

Let $M = \max\{2N, 2N'\}$ and notice that if m > M, then $|x_m - L| < \varepsilon$ regardless of whether m is even or odd. Therefore (x_m) converges to L.

- b) Here, we reduce to the case of (a). Suppose $x_{2n} \to A$, $x_{2n-1} \to B$, and $x_{5n} \to C$. Consider the sequence (x_{10n}) . This is a subsequence of (x_{2n}) , so it must converge to A. But is also a subsequence of (x_{5n}) , so it must converge to C. By the uniqueness of limits, we have A = C. Similarly (x_{10n-5}) is a subsequence of both (x_{2n-1}) and (x_{5n}) , so it must converge to both Band C, so B = C. Thus A = B = C, in particular A = B, so now we can apply (a).
- 3) For any $N \in \mathbb{N}$, $\{x_n + y_n | n > N\} \subseteq \{x_m + y_n | m, n > N\}$. Therefore

$$\sup_{n>N} (x_n + y_n) \le \sup_{m,n>N} (x_m + y_n) = \sup_{m>N} (x_m) + \sup_{n>N} (y_n).$$

Since this is true for all $N \in \mathbb{N}$, it is true in the limit. So $\limsup(x_n + y_n) \leq \limsup x_n + \limsup y_n$. By the above, and since $\liminf(z_n) = -\limsup(-z_n)$ for any bounded sequence z_n ,

$$\liminf(x_n + y_n) = -\limsup(-x_n - y_n)$$

$$\geq -\limsup(-x_n) - \limsup(-y_n) = \liminf(x_n) + \liminf(y_n).$$

Now we assume (x_n) converges to some L. If $\limsup y_n = \alpha$, then some subsequence $y_{n_k} \to \alpha$. Since $x_n \to L$, any subsequence converges to this limit, so in particular $x_{n_k} \to L$. Therefore the sequence $(x_n + y_n)$ has a subsequence $(x_{n_k} + y_{n_k})$ that converges to $L + \alpha$. Therefore

$$\limsup(x_n + y_n) \ge L + \alpha = \limsup x_n + \limsup y_n \ge \limsup(x_n + y_n),$$

so we have equality. Once again the relation between limsup and limit exploited above shows that equality also occurs for limit, when (x_n) converges.

4) We have (x_n) a bounded sequence and (a_n) the sequence defined as

$$a_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Let $\alpha = \limsup x_n$, and fix $1 > \varepsilon > 0$. Then $\exists N \in \mathbb{N}$ such that $\forall n > N$, $x_n < \alpha + \frac{\varepsilon}{2}$, by the definition of $\limsup x_n$. Let *B* be an upper bound for x_n . Then if $n > \frac{2BN}{\varepsilon}$,

$$a_n = \frac{x_1 + x_2 + \ldots + x_n}{n} = \sum_{i=1}^N \frac{x_i}{n} + \sum_{j=N+1}^n \frac{x_j}{n} \le \sum_{i=1}^N \frac{B}{\frac{2BN}{\varepsilon}} + \sum_{j=N+1}^n \frac{\alpha + \frac{\varepsilon}{2}}{n} \le \frac{\varepsilon}{2} + \alpha + \frac{\varepsilon}{2} = \alpha + \varepsilon.$$

So for *n* large enough, $a_n \leq \alpha + \varepsilon$. Therefore $\limsup a_n \leq \alpha + \varepsilon$. But ε can be chosen arbitrarily small, so $\limsup a_n \leq \alpha$. This also shows that $-\limsup -x_n \leq -\limsup -a_n$, or $\liminf x_n \leq \liminf a_n$. So we have

 $\liminf x_n \le \liminf a_n \le \limsup a_n \le \limsup x_n.$

If $x_n \to x$, then $\liminf x_n = \limsup x_n = x$, so by the inequality $\liminf a_n = \limsup a_n = x$, so $a_n \to x$. However, (a_n) can converge without (x_n) converging. For example, let $x_n = (-1)^n$. Then

$$a_n = \begin{cases} -\frac{1}{n} & n \text{ odd,} \\ 0 & n \text{ even.} \end{cases}$$

Since both even and odd subsequences converge to 0, $a_n \to 0$. (x_n) , on the other hand, has its odd subsequence converging to -1 and its even subsequence converging to 1 (they are both constant subsequences). So (x_n) does not converge.

5) We have that 0 < x < 1 and $x_n = 1 - \sqrt{1 - x_{n-1}}$. Since the functions 1 - x and \sqrt{x} both take the open interval (0, 1) to itself, by induction $0 < x_n < 1 \ \forall n \in \mathbb{N}$. For any $n \in \mathbb{N}$, we have

$$1 - \sqrt{1 - x_{n-1}} = x_n \Longrightarrow \sqrt{1 - x_{n-1}} = 1 - x_n \Longrightarrow 1 - x_{n-1} = (1 - x_n)^2 < 1 - x_n$$

since $0 < (1 - x_n) < 1$. This shows that $x_{n-1} > x_n$, so the sequence is decreasing. Therefore the sequence is decreasing and bounded below by 0, so it must have a limit $L \ge 0$. Suppose L > 0. Then $(1 - L)^2 < 1 - L < 1$, since it is clear by $L < x_1 < 1$ that L < 1 ((x_n) is strictly decreasing, so $L < x_n \forall n \in \mathbb{N}$). Therefore $1 - (1 - L)^2 > L$, so $\exists n \in \mathbb{N}$ such that

$$1 - (1 - L)^2 > x_n \Longrightarrow (1 - L)^2 < 1 - x_n \Longrightarrow 1 - L < \sqrt{1 - x_n} \Longrightarrow L > 1 - \sqrt{1 - x_n} = x_{n+1} > L.$$

This gives L > L, a contradiction. Therefore L = 0. Now to calculate the limit of $\frac{x_{n+1}}{x_n}$. We have

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{1 - \sqrt{1 - x_n}}{x_n} = \lim_{n \to \infty} \frac{(1 - \sqrt{1 - x_n}) \cdot (1 + \sqrt{1 - x_n})}{x_n (1 + \sqrt{1 - x_n})} = \lim_{n \to \infty} \frac{1 - (1 - x_n)}{x_n (1 + \sqrt{1 - x_n})} = \lim_{n \to \infty} \frac{1}{x_n (1 + \sqrt{1 - x_n})} = \lim_{n \to \infty} \frac{1}{1 + \sqrt{1 - x_n}} = \frac{1}{1 + \sqrt{1 - 0}} = \frac{1}{2}.$$

We can substitute the limit of x_n into the limit because the function $\frac{1}{1+\sqrt{1-x}}$ is continuous at 0, the limit of (x_n) .

6) a) So the defining equation for Φ is

$$\Phi = \frac{a}{b} = \frac{b}{c}$$

where a = b + c. So $c \cdot (b + c) = b \cdot b$ which gives

$$\left(\frac{b}{c}\right)^2 = \left(\frac{b}{c}\right) + 1 \Longrightarrow \Phi^2 = \Phi + 1$$

Using the quadratic formula with $x^2 - x - 1 = 0$, which Φ satisfies, we get

$$\Phi = \frac{1 \pm \sqrt{5}}{2}$$

and since Φ was defined to be greater than 1, the \pm sign must be a + sign. b) We want to show that

$$\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}$$

where the right hand side is the limit of the sequence x_n where $x_1 = 1$ and $x_n = 1 + \frac{1}{x_{n-1}}$. First we must show that (x_n) converges. It is clear that $x_n > 0$, $\forall n \in \mathbb{N}$. Now this gives that, since $x_n = 1 + \frac{1}{x_{n-1}}$, $x_n \ge 1$, $\forall n \in \mathbb{N}$. And this implies $\frac{1}{x_n} \le 1$, which gives that $x_{n+1} = 1 + \frac{1}{x_n} \le 2$. So $1 \le x_n \le 2$. Now consider x_{2n-1} , the odd terms of the sequence. The first few are:

$$x_1 = 1 \qquad \qquad x_3 = 1 + \frac{1}{1 + \frac{1}{1}} \qquad \qquad x_5 = 1 + \frac{1}{1 + \frac$$

Analyzing these, we see that $x_1 < x_3 < x_5 < \ldots$ This is because to get from x_{2n-1} to x_{2n+1} , you add a positive number to an even-numbered denominator of the continued fraction, which makes it greater. Since $x_{2n} = 1 + \frac{1}{x_{2n-1}}$, the even subsequence is 1 more than the inverses of the odd sequence, which is increasing, so the even subsequence is decreasing. Since these subsequences are both bounded between 1 and 2 and are monotonic, they must have limits, say $x_{2n-1} \to a$ and $x_{2n} \to b$. We have

$$a = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} 1 + \frac{1}{1 + \frac{1}{x_{2n-1}}} = 1 + \frac{1}{1 + \frac{1}{\lim x_{2n-1}}} = 1 + \frac{1}{1 + \frac{1}{a}}$$
$$a(1 + \frac{1}{a}) = (1 + \frac{1}{a}) + 1 \Longrightarrow a + 1 = 2 + \frac{1}{a} \Longrightarrow a^2 = a + 1.$$

But this is exactly the quadratic equation that Φ satisfies. Since $a \ge 1$, $a = \Phi$. Exactly the same argument works for b, since the relation between x_{2n+2} and x_{2n} is identical. Therefore $b = \Phi$, which implies (by problem 2) that $x_n \to \Phi$.

c) Now we want to show that $y_n \to \Phi$ for the sequence (y_n) defined by

$$y_1 = 1$$
, and $y_n = \sqrt{1 + y_{n-1}}$.

It is clear that $y_n \ge 1$, since by induction $y_n^2 = 1 + y_{n-1} \ge 2$. Also, $y_1 < \Phi$ and

$$y_{n-1} < \Phi \Longrightarrow y_{n-1} + 1 < \Phi + 1 \Longrightarrow y_n = \sqrt{1 + y_{n-1}} < \sqrt{\Phi + 1} = \Phi.$$

So by induction, $y_n < \Phi$. So $1 \le y_n < \Phi$ gives that $y_n^2 - y_n - 1 < 0$, or $y_n < \sqrt{1 + y_n} = y_{n+1}$. Thus (y_n) is an increasing sequence that is bounded above, so it converges to some limit, c. We have

$$c = \lim_{n \to \infty} y_n = \lim_{n \to \infty} \sqrt{1 + y_{n-1}} = \sqrt{1 + \lim_{n \to \infty} y_{n-1}} = \sqrt{1 + c}$$

So now $c = \sqrt{1+c}$ which gives $c^2 = c+1$, and since c > 1, we once again have $c = \Phi$. d) Now we define $z_1 = z_2 = 1$, and $z_n = z_{n-1} + z_{n-2}$ for n > 2. Let's define $x_n = \frac{z_{n+1}}{z_n}$. So we

have

$$x_1 = \frac{z_2}{z_1} = \frac{1}{1} = 1$$
, and $x_n = \frac{z_{n+1}}{z_n} = \frac{z_n + z_{n-1}}{z_n} = 1 + \frac{z_{n-1}}{z_n} = 1 + \frac{1}{x_{n-1}}$

But this is exactly the same as the (x_n) from a)! Exxxxcellent... it's all falling into place. We have shown $x_n \to \Phi$, so the ratios of consecutive Fibonacci numbers approaches Φ . MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.