18.100B Problem Set 5 Solutions
 Sawyer Tabony

1) We have $X \subseteq \mathcal{M}$, with \mathcal{M} complete. X is complete if and only if every Cauchy sequence of X converges to some $x \in X$. Let $\left(x_{i}\right)$ be Cauchy, with $x_{i} \in X$. \mathcal{M} being complete implies that $x_{i} \rightarrow y \in \mathcal{M}$. Therefore y is a limit point of X. So if X is closed, $y \in X$, so every Cauchy sequence converges in X, so X is complete.

Conversely, suppose X is complete. Therefore every Cauchy sequence of X converges to a point in X. If $y \in X^{\prime}$, then we can choose a sequence $\left(x_{i}\right) \subseteq X$ with $d\left(x_{i}, y\right)<\frac{1}{i}$, and since this converges to y in \mathcal{M}, it is Cauchy in X. Thus by completeness it converges in X, and by the uniqueness of limits, $y \in X$. Therefore $X^{\prime} \subseteq X$, so X is closed.
2) First, we know that if a sequence converges to some limit L, every subsequence of that sequence converges to L. This implies the "only if" (\Rightarrow) of both (a) and (b).
a) To prove the "if" (\Leftarrow) of a), assume the sequences $\left(x_{2 n}\right)$ and $\left(x_{2 n-1}\right)$ both converge to the limit L. Then given $\varepsilon>0$ we can find natural numbers N and N^{\prime} such that for

$$
n>N, n^{\prime}>N^{\prime} \Longrightarrow\left|x_{2 n}-L\right|<\varepsilon \text { and }\left|x_{2 n^{\prime}-1}-L\right|<\varepsilon
$$

Let $M=\max \left\{2 N, 2 N^{\prime}\right\}$ and notice that if $m>M$, then $\left|x_{m}-L\right|<\varepsilon$ regardless of whether m is even or odd. Therefore (x_{m}) converges to L.
b) Here, we reduce to the case of (a). Suppose $x_{2 n} \rightarrow A, x_{2 n-1} \rightarrow B$, and $x_{5 n} \rightarrow C$. Consider the sequence $\left(x_{10 n}\right)$. This is a subsequence of $\left(x_{2 n}\right)$, so it must converge to A. But is also a subsequence of $\left(x_{5 n}\right)$, so it must converge to C. By the uniqueness of limits, we have $A=C$. Similarly $\left(x_{10 n-5}\right)$ is a subsequence of both $\left(x_{2 n-1}\right)$ and $\left(x_{5 n}\right)$, so it must converge to both B and C, so $B=C$. Thus $A=B=C$, in particular $A=B$, so now we can apply (a).
3) For any $N \in \mathbb{N},\left\{x_{n}+y_{n} \mid n>N\right\} \subseteq\left\{x_{m}+y_{n} \mid m, n>N\right\}$. Therefore

$$
\sup _{n>N}\left(x_{n}+y_{n}\right) \leq \sup _{m, n>N}\left(x_{m}+y_{n}\right)=\sup _{m>N}\left(x_{m}\right)+\sup _{n>N}\left(y_{n}\right) .
$$

Since this is true for all $N \in \mathbb{N}$, it is true in the limit. So $\lim \sup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n}$. By the above, and $\operatorname{since} \lim \inf \left(z_{n}\right)=-\lim \sup \left(-z_{n}\right)$ for any bounded sequence z_{n},

$$
\begin{aligned}
\liminf \left(x_{n}+y_{n}\right) & =-\lim \sup \left(-x_{n}-y_{n}\right) \\
& \geq-\lim \sup \left(-x_{n}\right)-\lim \sup \left(-y_{n}\right)=\lim \inf \left(x_{n}\right)+\lim \inf \left(y_{n}\right) .
\end{aligned}
$$

Now we assume $\left(x_{n}\right)$ converges to some L. If $\lim \sup y_{n}=\alpha$, then some subsequence $y_{n_{k}} \rightarrow \alpha$. Since $x_{n} \rightarrow L$, any subsequence converges to this limit, so in particular $x_{n_{k}} \rightarrow L$. Therefore the sequence $\left(x_{n}+y_{n}\right)$ has a subsequence $\left(x_{n_{k}}+y_{n_{k}}\right)$ that converges to $L+\alpha$. Therefore

$$
\lim \sup \left(x_{n}+y_{n}\right) \geq L+\alpha=\lim \sup x_{n}+\lim \sup y_{n} \geq \lim \sup \left(x_{n}+y_{n}\right)
$$

so we have equality. Once again the relation between limsup and liminf exploited above shows that equality also occurs for liminf, when $\left(x_{n}\right)$ converges.
4) We have $\left(x_{n}\right)$ a bounded sequence and $\left(a_{n}\right)$ the sequence defined as

$$
a_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} .
$$

Let $\alpha=\limsup x_{n}$, and fix $1>\varepsilon>0$. Then $\exists N \in \mathbb{N}$ such that $\forall n>N, x_{n}<\alpha+\frac{\varepsilon}{2}$, by the definition of $\lim \sup x_{n}$. Let B be an upper bound for x_{n}. Then if $n>\frac{2 B N}{\varepsilon}$,
$a_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\sum_{i=1}^{N} \frac{x_{i}}{n}+\sum_{j=N+1}^{n} \frac{x_{j}}{n} \leq \sum_{i=1}^{N} \frac{B}{\frac{2 B N}{\varepsilon}}+\sum_{j=N+1}^{n} \frac{\alpha+\frac{\varepsilon}{2}}{n} \leq \frac{\varepsilon}{2}+\alpha+\frac{\varepsilon}{2}=\alpha+\varepsilon$.
So for n large enough, $a_{n} \leq \alpha+\varepsilon$. Therefore $\lim \sup a_{n} \leq \alpha+\varepsilon$. But ε can be chosen arbitrarily small, so $\lim \sup a_{n} \leq \alpha$. This also shows that $-\lim \sup -x_{n} \leq-\limsup -a_{n}$, or $\lim \inf x_{n} \leq$ $\liminf a_{n}$. So we have

$$
\liminf x_{n} \leq \liminf a_{n} \leq \limsup a_{n} \leq \limsup x_{n}
$$

If $x_{n} \rightarrow x$, then $\liminf x_{n}=\limsup x_{n}=x$, so by the inequality $\lim \inf a_{n}=\limsup a_{n}=x$, so $a_{n} \rightarrow x$. However, $\left(a_{n}\right)$ can converge without $\left(x_{n}\right)$ converging. For example, let $x_{n}=(-1)^{n}$. Then

$$
a_{n}= \begin{cases}-\frac{1}{n} & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

Since both even and odd subsequences converge to $0, a_{n} \rightarrow 0 .\left(x_{n}\right)$, on the other hand, has its odd subsequence converging to -1 and its even subsequence converging to 1 (they are both constant subsequences). So $\left(x_{n}\right)$ does not converge.
5) We have that $0<x<1$ and $x_{n}=1-\sqrt{1-x_{n-1}}$. Since the functions $1-x$ and \sqrt{x} both take the open interval $(0,1)$ to itself, by induction $0<x_{n}<1 \forall n \in \mathbb{N}$. For any $n \in \mathbb{N}$, we have

$$
1-\sqrt{1-x_{n-1}}=x_{n} \Longrightarrow \sqrt{1-x_{n-1}}=1-x_{n} \Longrightarrow 1-x_{n-1}=\left(1-x_{n}\right)^{2}<1-x_{n}
$$

since $0<\left(1-x_{n}\right)<1$. This shows that $x_{n-1}>x_{n}$, so the sequence is decreasing. Therefore the sequence is decreasing and bounded below by 0 , so it must have a limit $L \geq 0$. Suppose $L>0$. Then $(1-L)^{2}<1-L<1$, since it is clear by $L<x_{1}<1$ that $L<1\left(\left(x_{n}\right)\right.$ is strictly decreasing, so $\left.L<x_{n} \forall n \in \mathbb{N}\right)$. Therefore $1-(1-L)^{2}>L$, so $\exists n \in \mathbb{N}$ such that

$$
1-(1-L)^{2}>x_{n} \Longrightarrow(1-L)^{2}<1-x_{n} \Longrightarrow 1-L<\sqrt{1-x_{n}} \Longrightarrow L>1-\sqrt{1-x_{n}}=x_{n+1}>L
$$

This gives $L>L$, a contradiction. Therefore $L=0$.
Now to calculate the limit of $\frac{x_{n+1}}{x_{n}}$. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} & =\lim _{n \rightarrow \infty} \frac{1-\sqrt{1-x_{n}}}{x_{n}}=\lim _{n \rightarrow \infty} \frac{\left(1-\sqrt{1-x_{n}}\right) \cdot\left(1+\sqrt{1-x_{n}}\right)}{x_{n}\left(1+\sqrt{1-x_{n}}\right)}=\lim _{n \rightarrow \infty} \frac{1-\left(1-x_{n}\right)}{x_{n}\left(1+\sqrt{1-x_{n}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n}\left(1+\sqrt{1-x_{n}}\right)}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{1-x_{n}}}=\frac{1}{1+\sqrt{1-0}}=\frac{1}{2}
\end{aligned}
$$

We can substitute the limit of x_{n} into the limit because the function $\frac{1}{1+\sqrt{1-x}}$ is continuous at 0 , the limit of $\left(x_{n}\right)$.
6) a) So the defining equation for Φ is

$$
\Phi=\frac{a}{b}=\frac{b}{c}
$$

where $a=b+c$. So $c \cdot(b+c)=b \cdot b$ which gives

$$
\left(\frac{b}{c}\right)^{2}=\left(\frac{b}{c}\right)+1 \Longrightarrow \Phi^{2}=\Phi+1
$$

Using the quadratic formula with $x^{2}-x-1=0$, which Φ satisfies, we get

$$
\Phi=\frac{1 \pm \sqrt{5}}{2}
$$

and since Φ was defined to be greater than 1 , the \pm sign must be a $+\operatorname{sign}$.
b) We want to show that

$$
\Phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}
$$

where the right hand side is the limit of the sequence x_{n} where $x_{1}=1$ and $x_{n}=1+\frac{1}{x_{n-1}}$. First we must show that $\left(x_{n}\right)$ converges. It is clear that $x_{n}>0, \forall n \in \mathbb{N}$. Now this gives that, since $x_{n}=1+\frac{1}{x_{n-1}}, x_{n} \geq 1, \forall n \in \mathbb{N}$. And this implies $\frac{1}{x_{n}} \leq 1$, which gives that $x_{n+1}=1+\frac{1}{x_{n}} \leq 2$. So $1 \leq x_{n} \leq 2$. Now consider $x_{2 n-1}$, the odd terms of the sequence. The first few are:

$$
x_{1}=1 \quad x_{3}=1+\frac{1}{1+\frac{1}{1}} \quad x_{5}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}
$$

Analyzing these, we see that $x_{1}<x_{3}<x_{5}<\ldots$ This is because to get from $x_{2 n-1}$ to $x_{2 n+1}$, you add a positive number to an even-numbered denominator of the continued fraction, which makes it greater. Since $x_{2 n}=1+\frac{1}{x_{2 n-1}}$, the even subsequence is 1 more than the inverses of the odd sequence, which is increasing, so the even subsequence is decreasing. Since these subsequences are both bounded between 1 and 2 and are monotonic, they must have limits, say $x_{2 n-1} \rightarrow a$ and $x_{2 n} \rightarrow b$. We have

$$
\begin{gathered}
a=\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} 1+\frac{1}{1+\frac{1}{x_{2 n-1}}}=1+\frac{1}{1+\frac{1}{\lim x_{2 n-1}}}=1+\frac{1}{1+\frac{1}{a}} . \\
a\left(1+\frac{1}{a}\right)=\left(1+\frac{1}{a}\right)+1 \Longrightarrow a+1=2+\frac{1}{a} \Longrightarrow a^{2}=a+1
\end{gathered}
$$

But this is exactly the quadratic equation that Φ satisfies. Since $a \geq 1, a=\Phi$. Exactly the same argument works for b, since the relation between $x_{2 n+2}$ and $x_{2 n}$ is identical. Therefore $b=\Phi$, which implies (by problem 2) that $x_{n} \rightarrow \Phi$.
c) Now we want to show that $y_{n} \rightarrow \Phi$ for the sequence $\left(y_{n}\right)$ defined by

$$
y_{1}=1, \text { and } y_{n}=\sqrt{1+y_{n-1}}
$$

It is clear that $y_{n} \geq 1$, since by induction $y_{n}^{2}=1+y_{n-1} \geq 2$. Also, $y_{1}<\Phi$ and

$$
y_{n-1}<\Phi \Longrightarrow y_{n-1}+1<\Phi+1 \Longrightarrow y_{n}=\sqrt{1+y_{n-1}}<\sqrt{\Phi+1}=\Phi
$$

So by induction, $y_{n}<\Phi$. So $1 \leq y_{n}<\Phi$ gives that $y_{n}^{2}-y_{n}-1<0$, or $y_{n}<\sqrt{1+y_{n}}=y_{n+1}$. Thus $\left(y_{n}\right)$ is an increasing sequence that is bounded above, so it converges to some limit, c. We have

$$
c=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} \sqrt{1+y_{n-1}}=\sqrt{1+\lim _{n \rightarrow \infty} y_{n-1}}=\sqrt{1+c}
$$

So now $c=\sqrt{1+c}$ which gives $c^{2}=c+1$, and since $c>1$, we once again have $c=\Phi$.
d) Now we define $z_{1}=z_{2}=1$, and $z_{n}=z_{n-1}+z_{n-2}$ for $n>2$. Let's define $x_{n}=\frac{z_{n+1}}{z_{n}}$. So we have

$$
x_{1}=\frac{z_{2}}{z_{1}}=\frac{1}{1}=1, \text { and } x_{n}=\frac{z_{n+1}}{z_{n}}=\frac{z_{n}+z_{n-1}}{z_{n}}=1+\frac{z_{n-1}}{z_{n}}=1+\frac{1}{x_{n-1}}
$$

But this is exactly the same as the $\left(x_{n}\right)$ from a)! Exxxxxcellent... it's all falling into place. We have shown $x_{n} \rightarrow \Phi$, so the ratios of consecutive Fibonacci numbers approaches Φ.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

