18.100B Problem Set 5

Due Friday October 20, 2006 by 3 PM

Problems:

1) Let \mathcal{M} be a complete metric space, and let $X \subseteq \mathcal{M}$. Show that X is complete if and only if X is closed.
2) a) Show that a sequence in an arbitrary metric space $\left(x_{n}\right)$ converges if and only if the 'even' and 'odd' subsequences $\left(x_{2 n}\right)$ and ($x_{2 n-1}$) both converge to the same limit.
b) Show that a sequence in an arbitrary metric space $\left(x_{n}\right)$ converges if and only if the subsequences $\left(x_{2 n}\right),\left(x_{2 n-1}\right)$, and $\left(x_{5 n}\right)$ all converge.
3) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two bounded sequences of real numbers, show that
a) $\lim \sup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n}$
b) $\lim \inf \left(x_{n}+y_{n}\right) \geq \liminf \left(x_{n}\right)+\lim \inf \left(y_{n}\right)$

Moreover, show that if $\left(x_{n}\right)$ converges, then both inequalities are actually equalitites.
(Hint: Pick a subsequence of $\left(x_{n}+y_{n}\right)$ that converges, then, from these $x_{n_{k}}$'s pick a subsequence that converges and do the same for the $y_{n_{k}}$'s)
4) The 'sequence of averages' of a sequence of real numbers $\left(x_{n}\right)$ is the sequence (a_{n}) defined by

$$
a_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

If $\left(x_{n}\right)$ is a bounded sequence of real numbers, then show that

$$
\liminf x_{n} \leq \liminf a_{n} \leq \limsup a_{n} \leq \lim \sup x_{n} .
$$

In particular, if $x_{n} \rightarrow x$ then show that $a_{n} \rightarrow x$. Does the convergence of $\left(a_{n}\right)$ imply the convergence of $\left(x_{n}\right)$?
(Hint: Fix $\varepsilon>0$, let $x^{*}=\limsup x_{n}$ and set $K=\left\{k \in \mathbb{N}: x_{k} \geq x^{*}+\varepsilon\right\}$. K is finite (why?), define $\mathcal{S}_{n}=\{i \in \mathbb{N}: i \in K$ and $i \leq n\}$ and $\mathcal{T}_{n}=\{i \in \mathbb{N}: i \notin K$ and $i \leq n\}$ and define the sequences $\left(s_{n}\right),\left(t_{n}\right)$ by

$$
s_{n}=\sum_{i \in \mathcal{S}_{n}} x_{i}, \quad t_{n}=\sum_{i \in \mathcal{T}_{n}} x_{i}
$$

Explain why $a_{n}=\frac{s_{n}}{n}+\frac{t_{n}}{n}, \frac{s_{n}}{n} \rightarrow 0$ and $\frac{t_{n}}{n} \leq x^{*}+\varepsilon$ for any n. Then use the previous exercise to show that $\lim \sup a_{n} \leq x^{*}+\varepsilon$. Hence $\limsup a_{n} \leq x^{*}$ (why?))
5) Consider any sequence (x_{n}) defined by choosing $0<x_{1}<1$ and then defining $x_{n+1}=1-\sqrt{1-x_{n}}$ for $n \geq 0$. Show that x_{n} is a decreasing sequence converging to zero. Also, show that $\frac{x_{n+1}}{x_{n}} \rightarrow \frac{1}{2}$.
6) The Greeks thought that the number Φ, known as the Golden Mean, was the ratio of the sides of the most aesthetically pleasing rectangles.
Imagine a line segment A divided into two smaller line segments B and C, with lengths a, b, and c respectively and $b>c$. If the proportion between a and b is the same as the proportion between b and c, then we call this proportion Φ.
a) Show that with a, b, and c as above, $\Phi=\frac{b}{c}$ satisfies $\Phi^{2}=\Phi+1$. Conclude that $\Phi=\frac{1+\sqrt{5}}{2}$.
b) Show that:

$$
\Phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}}
$$

Hint: Define $x_{1}=1$ and $x_{n+1}=1+\frac{1}{x_{n}}$.
c) Show that:

$$
\Phi=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}
$$

Hint: Define $y_{1}=1$ and $y_{n+1}=\sqrt{1+y_{n}}$.
d) The Fibonacci sequence is defined by $z_{1}=1, z_{2}=1$, and $z_{n+2}=z_{n+1}+z_{n}$. Show that the sequence of ratios of succesive elements, $\frac{z_{n+1}}{z_{n}}$, converges to Φ.
Φ shows up a lot in nature. One reason for this might be that it is the 'most irrational number'.
For more information about this, check out the links section of the course webpage.

Extra problems:

1) Prove that $\lim x_{n}=x$ if and only if every subsequence of $\left(x_{n}\right)$ has a subsequence that converges to x.
2) If $\left(x_{n}\right)$ is a sequence of strictly positive real numbers, show that

$$
\lim \inf \frac{x_{n+1}}{x_{n}} \leq \liminf \sqrt[n]{x_{n}} \leq \lim \sup \sqrt[n]{x_{n}} \leq \lim \sup \frac{x_{n+1}}{x_{n}}
$$

3) Fix a positive number α. Choose $x_{1}>\sqrt{\alpha}$ and define x_{n} for $n>1$ by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)
$$

Prove that $\left(x_{n}\right)$ decreases monotonically and that $\lim x_{n}=\sqrt{\alpha}$. Show that, if $\varepsilon_{n}=x_{n}-\sqrt{\alpha}$, then

$$
\varepsilon_{n+1}=\frac{\varepsilon_{n}^{2}}{2 x_{n}}<\frac{\varepsilon_{n}^{2}}{2 \sqrt{\alpha}}
$$

so that, setting $\beta=2 \sqrt{\alpha}$,

$$
\varepsilon_{n+1}<\beta\left(\frac{\varepsilon_{1}}{\beta}\right)^{2^{n}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

