18.100B Problem Set 3 Solutions Sawyer Tabony

1) We begin by defining $d: V \times V \longrightarrow \mathbb{R}$ such that d(x,y) = ||x - y||. Now to show that this function satisfies the definition of a metric. $d(x,y) = ||x - y|| \ge 0$ and

$$d(x,y) = 0 \iff ||x - y|| = 0 \iff x - y = 0 \iff x = y$$

So the function is positive definite.

$$d(x,y) = ||x - y|| = || - 1(y - x)|| = |-1|||y - x|| = ||y - x|| = d(y,x)$$

Thus the function is symmetric. Finally,

$$d(x,z) = ||x - z|| = ||x - y + y - z|| \le ||x - y|| + ||y - z|| = d(x,y) + d(y,z)$$

So the triangle inequality holds. Therefore d is a metric.

2) Once again we must verify the properties of a metric. We have defined d_1 as

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

Since d is a metric, it only takes nonnegative values, so d_1 cannot be negative. $d_1(x, y)$ is zero exactly when d(x, y) is, so only for x = y. Therefore d_1 is positive definite. Since d is symmetric, d_1 obviously inherits this property. Finally, for $x, y, z \in M$

$$\begin{aligned} d_1(x,y) + d_1(y,z) &= \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = \frac{d(x,y) + d(y,z) + 2d(x,y)d(y,z)}{1+d(x,y) + d(y,z) + d(x,y)d(y,z)} \\ &\geq \frac{d(x,y) + d(y,z) + d(x,y)d(y,z)}{1+d(x,y) + d(y,z) + d(x,y)d(y,z)} = 1 - \frac{1}{1+d(x,y) + d(y,z) + d(x,y)d(y,z)} \\ &\geq 1 - \frac{1}{1+d(x,y) + d(y,z)} \geq 1 - \frac{1}{1+d(x,z)} = \frac{d(x,z)}{1+d(x,z)} = d_1(x,z) \end{aligned}$$

So the triangle inequality holds, thus we have a metric. It is easy to see that this metric never takes on a value larger than 1, since d(x, y) < 1 + d(x, y), so under the metric d_1 , M is bounded.

3) a) $A, B \subseteq M, M$ a metric space. Suppose $x \in A^{\circ} \cup B^{\circ}$. Without loss of generality, say $x \in A^{\circ}$. Therefore x is an interior point of A, so $\exists \epsilon > 0$ such that the ball of radius ϵ centered at x is contained in A, or $B_{\epsilon}(x) \subseteq A$. Since $A \subseteq A \cup B$,

$$B_{\epsilon}(x) \subseteq A \cup B \Longrightarrow x \in (A \cup B)^{\circ}$$

This shows that $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$.

b) Now let $x \in A^{\circ} \cap B^{\circ}$. Therefore $x \in A^{\circ}$, so x is an interior point of A, hence $\exists \varepsilon_1 > 0$ such that $B_{\varepsilon_1}(x) \subseteq A$. Similarly, $x \in B^{\circ} \Longrightarrow \exists \varepsilon_2 > 0$ such that $B_{\varepsilon_2}(x) \subseteq B$. Let $\delta = \min(\varepsilon_1, \varepsilon_2)$. By the triangle inequality,

$$\delta \leq \varepsilon_i \Longrightarrow B_{\delta}(x) \subseteq B_{\epsilon_i}(x) \Longrightarrow B_{\delta}(x) \subseteq A \text{ and } B_{\delta}(x) \subseteq B.$$

Therefore $B_{\delta}(x) \subseteq A \cap B$, so x is an interior point of $A \cap B$. Hence $A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$.

Let $x \in (A \cap B)^{\circ}$. So $\exists \varepsilon > 0$ with $B_{\varepsilon}(x) \subseteq A \cap B$. Therefore $B_{\varepsilon}(x) \subseteq A$ so $x \in A^{\circ}$, and similarly $x \in B^{\circ}$. So $x \in A^{\circ} \cap B^{\circ}$. Thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$. So these two sets are equal.

Let A = (-1, 0] and B = [0, 1). Then 0 is an interior point of neither A nor B, so $0 \notin A^{\circ} \cup B^{\circ}$. But $A \cup B = (-1, 1)$, so $0 \in (A \cup B)^{\circ}$. Therefore in this instance the two sets are unequal.

4) a) If $x \in \partial A$ then every ball around x intersects A and A^c . Thus $x \in A$ and x is a limit point of A^c or $x \in A^c$ and x is a limit point of A. Either way, $x \in \overline{A} \cap \overline{A^c}$, and hence $\partial A \subseteq \overline{A} \cap \overline{A^c}$.

Now let $x \in \overline{A} \cap \overline{A^c}$. Since $x \in \overline{A}$, either $x \in A$ or x is a limit point of A, and in both cases any open ball around x intersects A. Similarly, $x \in \overline{A^c}$ implies any open ball around x intersects A^c . Therefore $x \in \partial A$, so $\overline{A} \cap \overline{A^c} \subseteq \partial A$. So these two sets are equal.

b) Let $p \in \partial A$. By a), $p \in \overline{A}$. Suppose $p \in A^{\circ}$ then $\exists \varepsilon > 0$ such that $B_{\varepsilon}(p) \subseteq A$. But this is an open ball centered at p which does not intersect A^c , so $p \notin \partial A$. This contradiction implies that $p \notin A^{\circ}$.

Now suppose $p \in \overline{A} \setminus A^{\circ}$. For any $\varepsilon > 0$, $p \in \overline{A}$ gives that $B_{\varepsilon}(x)$ intersects A, and $p \notin A^{\circ}$ implies that $B_{\varepsilon}(x) \notin A$, so $B_{\varepsilon}(x)$ intersects A^{c} . So $p \in \partial A$, and this shows that $\partial A = \overline{A} \setminus A^{\circ}$.

- c) By a), ∂A can be written as the intersection of two closed sets. Thus ∂A is closed.
- d) Suppose A is closed. Then $\overline{A} = A$, so by a)

$$\partial A = \overline{A} \cap \overline{A^c} = A \cap \overline{A^c} \subseteq A$$

Conversely, note that for any set B, if $x \notin B$ and $x \notin \partial B$, then there is a positive r > 0 such that $B_r(x) \subseteq B^c$ and hence $x \notin \overline{B}$. This implies that

for any set
$$B, \overline{B} \subseteq B \cup \partial B$$
.

So if $\partial A \subseteq A$, then $\overline{A} \subseteq A \cup \partial A = A \subseteq \overline{A}$ i.e., $A = \overline{A}$ hence A is closed.

5) We will show that $S_r(x) := \{y : d(x, y) = r\}$ is the boundary of $B_r(x)$. It will follow from the previous exercise that

$$\overline{B_r(x)} = \partial B_r(x) \cup B_r(x) = \{y : d(x,y) \le r\}.$$

It is clear that if y is such that d(x, y) = r then $y \in \partial B_r(x)$ since any ball around y will have points that are closer to x and points that are further away. We just have to show that if $d(x, y) \neq r$, then y is not in $\partial B_r(x)$.

But if d(x, y) < r then for any $0 < \varepsilon < r - d(x, y)$ the ball of radius ε around y is all inside $B_r(x)$ and $y \notin \partial B_r(x)$; and if d(x, y) > r then for any $0 < \delta < d(x, y) - r$ the ball of radius δ around y is all outside of $B_r(x)$ so that again $y \notin \partial B_r(x)$. Thus $\partial B_r(x)$ is precisely $S_r(x)$ and we are done.

Here is an example of a different metric space where this result is not true: Consider \mathbb{R}^n with the discrete metric,

$$\widetilde{d}(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

and the ball around any point p with radius 1:

$$B_1(p) = \{q : \tilde{d}(p,q) < 1\} = \{p\}, \text{ while } \{q : \tilde{d}(p,q) \le 1\} = \mathbb{R}^n.$$

Notice that the open ball is finite and hence closed. In particular, the closure of $B_1(p)$ is just $\{p\}$ and not $\{q: \tilde{d}(p,q) \leq 1\}$.

6) We need to show that K is compact or that every open cover of K contains a finite subcover. Let $\{\mathcal{U}_{\alpha}\}_{\alpha \in A}$ be an open cover of K, so

$$K = \{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\} \subseteq \bigcup_{\alpha \in A} \mathcal{U}_{\alpha} \Longrightarrow \exists \alpha_0 \in A \text{ such that } 0 \in \mathcal{U}_{\alpha_0}$$

Since \mathcal{U}_{α_0} is open, $\exists \varepsilon > 0$ with $B_{\varepsilon}(0) \subseteq \mathcal{U}_{\alpha_0}$. Because $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $n > N \implies \frac{1}{N} < \varepsilon$. Hence the open set \mathcal{U}_{α_0} contains all of the $\frac{1}{n}$ with n > N, i.e., it contains all but finitely many elements of K.

Now, for
$$i = 1, 2, ..., N$$
, $\frac{1}{i} \in K$. So $\exists \alpha_i \in A$ such that $\frac{1}{i} \in \mathcal{U}_{\alpha_i}$. So we have shown that

$$K \subseteq \bigcup_{i=0}^{N} \mathcal{U}_{\alpha_i}$$

a finite subcover of $\{\mathcal{U}_{\alpha}\}_{\alpha\in A}$. So every open cover of K contains a finite subcover, which shows that K is compact.

7) We have $\{\mathcal{U}_{\alpha}\}_{\alpha \in A}$ an open cover of K. Define

$$\mathcal{V}_{\alpha,n} = \{x \in \mathcal{U}_{\alpha} | B_{\frac{1}{n}}(x) \subseteq \mathcal{U}_{\alpha}\}^{\circ} \text{ for all } \alpha \in A, n \in \mathbb{N}.$$

The \mathcal{U}_{α} are open, so for any point $x \in \mathcal{U}_{\alpha}$, there is some $n \in \mathbb{N}$ such that

$$B_{\frac{2}{n}}(x) \subseteq \mathcal{U}_{\alpha} \Longrightarrow B_{\frac{1}{n}}(x) \subseteq \{y \in \mathcal{U}_{\alpha} | B_{\frac{1}{n}}(y) \subseteq \mathcal{U}_{\alpha}\} \Longrightarrow x \in \mathcal{V}_{\alpha,n}. \text{ Hence } \bigcup_{n \in \mathbb{N}} \mathcal{V}_{\alpha,n} = \mathcal{U}_{\alpha}.$$

So taking the union over all $\alpha \in A$, we have

$$\bigcup_{\substack{\alpha \in A \\ n \in \mathbb{N}}} \mathcal{V}_{\alpha,n} = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha} \supseteq K$$

So $\{\mathcal{V}_{\alpha,n}\}_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}}$ is an open cover of K (each set is an interior, thus open). By the compactness of K, there exists a finite subcover $\{\mathcal{V}_{\alpha_i,n_i}\}_{i=1}^N$. Let $\delta = (\max_{1 \leq i \leq N} n_i)^{-1}$. Then $\forall x \in K, \exists i' \in \{1, 2, \ldots, n\}$ with

$$x \in \mathcal{V}_{\alpha_{i'}, n_{i'}} \Longrightarrow B_{\frac{1}{n_{i'}}}(x) \subseteq \mathcal{U}_{\alpha_{i'}}.$$

Since $\delta^{-1} = \max_{1 \leq i \leq N} n_i \geq n_{i'}$, we have $\delta \leq \frac{1}{n_{i'}}$, so $B_{\delta}(x) \subseteq B_{\frac{1}{n_{i'}}} \subseteq \mathcal{U}_{\alpha'_i}$. Thus our δ has the prescribed property.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.