### 18.100B Problem Set 3 Solutions

## Sawyer Tabony

1) We begin by defining $d: V \times V \longrightarrow \mathbb{R}$ such that $d(x, y)=\|x-y\|$. Now to show that this function satisfies the definition of a metric. $d(x, y)=\|x-y\| \geq 0$ and

$$
d(x, y)=0 \Longleftrightarrow\|x-y\|=0 \Longleftrightarrow x-y=0 \Longleftrightarrow x=y
$$

So the function is positive definite.

$$
d(x, y)=\|x-y\|=\|-1(y-x)\|=|-1|\|y-x\|=\|y-x\|=d(y, x)
$$

Thus the function is symmetric. Finally,

$$
d(x, z)=\|x-z\|=\|x-y+y-z\| \leq\|x-y\|+\|y-z\|=d(x, y)+d(y, z)
$$

So the triangle inequality holds. Therefore $d$ is a metric.
2) Once again we must verify the properties of a metric. We have defined $d_{1}$ as

$$
d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Since $d$ is a metric, it only takes nonnegative values, so $d_{1}$ cannot be negative. $d_{1}(x, y)$ is zero exactly when $d(x, y)$ is, so only for $x=y$. Therefore $d_{1}$ is positive definite. Since $d$ is symmetric, $d_{1}$ obviously inherits this property. Finally, for $x, y, z \in M$

$$
\begin{aligned}
d_{1}(x, y)+d_{1}(y, z) & =\frac{d(x, y)}{1+d(x, y)}+\frac{d(y, z)}{1+d(y, z)}=\frac{d(x, y)+d(y, z)+2 d(x, y) d(y, z)}{1+d(x, y)+d(y, z)+d(x, y) d(y, z)} \\
& \geq \frac{d(x, y)+d(y, z)+d(x, y) d(y, z)}{1+d(x, y)+d(y, z)+d(x, y) d(y, z)}=1-\frac{1}{1+d(x, y)+d(y, z)+d(x, y) d(y, z)} \\
& \geq 1-\frac{1}{1+d(x, y)+d(y, z)} \geq 1-\frac{1}{1+d(x, z)}=\frac{d(x, z)}{1+d(x, z)}=d_{1}(x, z)
\end{aligned}
$$

So the triangle inequality holds, thus we have a metric. It is easy to see that this metric never takes on a value larger than 1 , since $d(x, y)<1+d(x, y)$, so under the metric $d_{1}, M$ is bounded.
3) a) $A, B \subseteq M, M$ a metric space. Suppose $x \in A^{\circ} \cup B^{\circ}$. Without loss of generality, say $x \in A^{\circ}$. Therefore $x$ is an interior point of $A$, so $\exists \epsilon>0$ such that the ball of radius $\epsilon$ centered at $x$ is contained in $A$, or $B_{\epsilon}(x) \subseteq A$. Since $A \subseteq A \cup B$,

$$
B_{\epsilon}(x) \subseteq A \cup B \Longrightarrow x \in(A \cup B)^{\circ}
$$

This shows that $A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ}$.
b) Now let $x \in A^{\circ} \cap B^{\circ}$. Therefore $x \in A^{\circ}$, so $x$ is an interior point of $A$, hence $\exists \varepsilon_{1}>0$ such that $B_{\varepsilon_{1}}(x) \subseteq A$. Similarly, $x \in B^{\circ} \Longrightarrow \exists \varepsilon_{2}>0$ such that $B_{\varepsilon_{2}}(x) \subseteq B$. Let $\delta=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$. By the triangle inequality,

$$
\delta \leq \varepsilon_{i} \Longrightarrow B_{\delta}(x) \subseteq B_{\epsilon_{i}}(x) \Longrightarrow B_{\delta}(x) \subseteq A \text { and } B_{\delta}(x) \subseteq B
$$

Therefore $B_{\delta}(x) \subseteq A \cap B$, so $x$ is an interior point of $A \cap B$. Hence $A^{\circ} \cap B^{\circ} \subseteq(A \cap B)^{\circ}$.

Let $x \in(A \cap B)^{\circ}$. So $\exists \varepsilon>0$ with $B_{\varepsilon}(x) \subseteq A \cap B$. Therefore $B_{\varepsilon}(x) \subseteq A$ so $x \in A^{\circ}$, and similarly $x \in B^{\circ}$. So $x \in A^{\circ} \cap B^{\circ}$. Thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$. So these two sets are equal.

Let $A=(-1,0]$ and $B=[0,1)$. Then 0 is an interior point of neither $A$ nor $B$, so $0 \notin A^{\circ} \cup B^{\circ}$. But $A \cup B=(-1,1)$, so $0 \in(A \cup B)^{\circ}$. Therefore in this instance the two sets are unequal.
4) a) If $x \in \partial A$ then every ball around $x$ intersects $A$ and $A^{c}$. Thus $x \in A$ and $x$ is a limit point of $A^{c}$ or $x \in A^{c}$ and $x$ is a limit point of $A$. Either way, $x \in \bar{A} \cap \overline{A^{c}}$, and hence $\partial A \subseteq \bar{A} \cap \overline{A^{c}}$.

Now let $x \in \bar{A} \cap \overline{A^{c}}$. Since $x \in \bar{A}$, either $x \in A$ or $x$ is a limit point of $A$, and in both cases any open ball around $x$ intersects $A$. Similarly, $x \in \overline{A^{c}}$ implies any open ball around $x$ intersects $A^{c}$. Therefore $x \in \partial A$, so $\bar{A} \cap \overline{A^{c}} \subseteq \partial A$. So these two sets are equal.
b) Let $p \in \partial A$. By a), $p \in \bar{A}$. Suppose $p \in A^{\circ}$ then $\exists \varepsilon>0$ such that $B_{\varepsilon}(p) \subseteq A$. But this is an open ball centered at $p$ which does not intersect $A^{c}$, so $p \notin \partial A$. This contradiction implies that $p \notin A^{\circ}$.

Now suppose $p \in \bar{A} \backslash A^{\circ}$. For any $\varepsilon>0, p \in \bar{A}$ gives that $B_{\varepsilon}(x)$ intersects $A$, and $p \notin A^{\circ}$ implies that $B_{\varepsilon}(x) \nsubseteq A$, so $B_{\varepsilon}(x)$ intersects $A^{c}$. So $p \in \partial A$, and this shows that $\partial A=\bar{A} \backslash A^{\circ}$.
c) By a), $\partial A$ can be written as the intersection of two closed sets. Thus $\partial A$ is closed.
d) Suppose $A$ is closed. Then $\bar{A}=A$, so by a)

$$
\partial A=\bar{A} \cap \overline{A^{c}}=A \cap \overline{A^{c}} \subseteq A
$$

Converesely, note that for any set $B$, if $x \notin B$ and $x \notin \partial B$, then there is a positive $r>0$ such that $B_{r}(x) \subseteq B^{c}$ and hence $x \notin \bar{B}$. This implies that
for any set $B, \bar{B} \subseteq B \cup \partial B$.
So if $\partial A \subseteq A$, then $\bar{A} \subseteq A \cup \partial A=A \subseteq \bar{A}$ i.e., $A=\bar{A}$ hence $A$ is closed.
5) We will show that $S_{r}(x):=\{y: d(x, y)=r\}$ is the boundary of $B_{r}(x)$. It will follow from the previous exercise that

$$
\overline{B_{r}(x)}=\partial B_{r}(x) \cup B_{r}(x)=\{y: d(x, y) \leq r\}
$$

It is clear that if $y$ is such that $d(x, y)=r$ then $y \in \partial B_{r}(x)$ since any ball around $y$ will have points that are closer to $x$ and points that are further away. We just have to show that if $d(x, y) \neq r$, then $y$ is not in $\partial B_{r}(x)$.

But if $d(x, y)<r$ then for any $0<\varepsilon<r-d(x, y)$ the ball of radius $\varepsilon$ around $y$ is all inside $B_{r}(x)$ and $y \notin \partial B_{r}(x)$; and if $d(x, y)>r$ then for any $0<\delta<d(x, y)-r$ the ball of radius $\delta$ around $y$ is all outside of $B_{r}(x)$ so that again $y \notin \partial B_{r}(x)$. Thus $\partial B_{r}(x)$ is precisely $S_{r}(x)$ and we are done.

Here is an example of a different metric space where this result is not true: Consider $\mathbb{R}^{n}$ with the discrete metric,

$$
\tilde{d}(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

and the ball around any point $p$ with radius 1 :

$$
B_{1}(p)=\{q: \widetilde{d}(p, q)<1\}=\{p\}, \quad \text { while } \quad\{q: \widetilde{d}(p, q) \leq 1\}=\mathbb{R}^{n} .
$$

Notice that the open ball is finite and hence closed. In particular, the closure of $B_{1}(p)$ is just $\{p\}$ and not $\{q: \widetilde{d}(p, q) \leq 1\}$.
6) We need to show that $K$ is compact or that every open cover of $K$ contains a finite subcover. Let $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in A}$ be an open cover of $K$, so

$$
K=\left\{0,1, \frac{1}{2}, \ldots \frac{1}{n} \ldots\right\} \subseteq \bigcup_{\alpha \in A} \mathcal{U}_{\alpha} \Longrightarrow \exists \alpha_{0} \in A \text { such that } 0 \in \mathcal{U}_{\alpha_{0}}
$$

Since $\mathcal{U}_{\alpha_{0}}$ is open, $\exists \varepsilon>0$ with $B_{\varepsilon}(0) \subseteq \mathcal{U}_{\alpha_{0}}$. Because $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that $n>N \Longrightarrow \frac{1}{N}<\varepsilon$. Hence the open set $\mathcal{U}_{\alpha_{0}}$ contains all of the $\frac{1}{n}$ with $n>N$, i.e., it contains all but finitely many elements of $K$.

Now, for $i=1,2, \ldots, N, \frac{1}{i} \in K$. So $\exists \alpha_{i} \in A$ such that $\frac{1}{i} \in \mathcal{U}_{\alpha_{i}}$. So we have shown that

$$
K \subseteq \bigcup_{i=0}^{N} \mathcal{U}_{\alpha_{i}}
$$

a finite subcover of $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in A}$. So every open cover of $K$ contains a finite subcover, which shows that $K$ is compact.
7) We have $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in A}$ an open cover of $K$. Define

$$
\mathcal{V}_{\alpha, n}=\left\{x \in \mathcal{U}_{\alpha} \left\lvert\, B_{\frac{1}{n}}(x) \subseteq \mathcal{U}_{\alpha}\right.\right\}^{\circ} \text { for all } \alpha \in A, n \in \mathbb{N} .
$$

The $\mathcal{U}_{\alpha}$ are open, so for any point $x \in \mathcal{U}_{\alpha}$, there is some $n \in \mathbb{N}$ such that

$$
B_{\frac{2}{n}}(x) \subseteq \mathcal{U}_{\alpha} \Longrightarrow B_{\frac{1}{n}}(x) \subseteq\left\{y \in \mathcal{U}_{\alpha} \left\lvert\, B_{\frac{1}{n}}(y) \subseteq \mathcal{U}_{\alpha}\right.\right\} \Longrightarrow x \in \mathcal{V}_{\alpha, n} . \text { Hence } \bigcup_{n \in \mathbb{N}} \mathcal{V}_{\alpha, n}=\mathcal{U}_{\alpha}
$$

So taking the union over all $\alpha \in A$, we have

$$
\bigcup_{\substack{\alpha \in A \\ n \in \mathbb{N}}} \mathcal{V}_{\alpha, n}=\bigcup_{\alpha \in A} \mathcal{U}_{\alpha} \supseteq K .
$$

So $\left\{\mathcal{V}_{\alpha, n}\right\}_{\substack{\alpha \in A \\ n \in \mathbb{N}}}$ is an open cover of $K$ (each set is an interior, thus open). By the compactness of $K$, there exists a finite subcover $\left\{\mathcal{V}_{\alpha_{i}, n_{i}}\right\}_{i=1}^{N}$. Let $\delta=\left(\max _{1 \leq i \leq N} n_{i}\right)^{-1}$. Then $\forall x \in K, \exists i^{\prime} \in$ $\{1,2, \ldots, n\}$ with

$$
x \in \mathcal{V}_{\alpha_{i^{\prime}}, n_{i^{\prime}}} \Longrightarrow B_{\frac{1}{n_{i^{\prime}}}}(x) \subseteq \mathcal{U}_{\alpha_{i^{\prime}}} .
$$

Since $\delta^{-1}=\max _{1 \leq i \leq N} n_{i} \geq n_{i^{\prime}}$, we have $\delta \leq \frac{1}{n_{i^{\prime}}}$, so $B_{\delta}(x) \subseteq B_{\frac{1}{n_{i^{\prime}}}} \subseteq \mathcal{U}_{\alpha_{i}^{\prime}}$. Thus our $\delta$ has the prescribed property.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

