18.100B Problem Set 3

Due Friday September 29, 2006 by 3 PM

Problems:

- 1) (10 pts) In vector spaces, metrics are usually defined in terms of *norms* which measure the length of a vector. If V is a vector space defined over \mathbb{R} , then a norm is a function from vectors to real numbers, denoted by $\|\cdot\|$ satisfying:
 - i) $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$,
 - ii) For any $\lambda \in \mathbb{R}$, $\|\lambda x\| = |\lambda| \|x\|$,
 - iii) $||x + y|| \le ||x|| + ||y||.$

Prove that every norm defines a metric.

2) (10 pts) Let M be a metric space with metric d. Show that d_1 defined by

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$$

is also a metric on M. Observe that M itself is bounded in this metric.

3) (10 pts) Let A and B be two subsets of a metric space M. Recall that A° , the interior of A, is the set of interior points of A. Prove the following:

$$a A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}, \quad b A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

Give an example of two subsets A and B of the real line such that $A^{\circ} \cup B^{\circ} \neq (A \cup B)^{\circ}$.

- 4) (10 pts) Let A be a subset of a metric space M. Recall that A, the closure of A, is the union of A and its limit points. Recall that a point x belongs to the boundary of A, ∂A, if every open ball centered at x contains points of A and points of A^c, the complement of A. Prove that:
 a) ∂A = A ∩ A^c,
 - b) $p \in \partial A \iff p$ is in \overline{A} , but not in A° (symbolically, $\partial A = \overline{A} \setminus A^{\circ}$),
 - c) ∂A is a closed set,
 - d) A is closed $\iff \partial A \subseteq A$.
- 5) (10 pts) Show that, in \mathbb{R}^n with the usual (Euclidean) metric, the closure of the open ball $B_R(p)$, R > 0, is the closed ball

$$\{q \in \mathbb{R}^n : d(p,q) \le R\}$$

Given an example of a metric space for which the corresponding statement is false.

6) (10 pts) Prove directly form the definition that the set $K \subseteq \mathbb{R}$ given by

$$K = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$$

is compact.

7) (10 pts) Let K be a compact subset of a metric space M, and let $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be an open cover of K. Show that there is a positive real number δ with the property that for every $x \in K$ there is some $\alpha \in A$ with

$$B_{\delta}(x) \subseteq \mathcal{U}_{\alpha}.$$

Extra problems:

- 1) Let M be a non-empty set, and let d be a real-valued function of ordered pairs of elements of M satisfying
 - i) $d(x,y) = 0 \iff x = y$, ii) $d(x,y) \le d(x,z) + d(y,z)$.

Show that d is a metric on M.

- 2) Determine the boundaries of the following sets, $A \subseteq X$:
 - i) $A = \mathbb{Q}, X = \mathbb{R}$
 - ii) $A = \mathbb{R} \setminus \mathbb{Q}, X = \mathbb{R}$
 - iii) $A = (\mathbb{Q} \times \mathbb{Q}) \cap B_R(0), X = \mathbb{R}^2$
- 3) Describe the interior of the Cantor set.
- 4) Let M be a metric space with metric d, and let d_1 be the metric defined above (in problem 2). Show that the two metric spaces (M, d), (M, d_1) have the same open sets.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.