18.100B Problem Set 3

Due Friday September 29, 2006 by 3 PM

Problems:

1) (10 pts) In vector spaces, metrics are usually defined in terms of norms which measure the length of a vector. If V is a vector space defined over \mathbb{R}, then a norm is a function from vectors to real numbers, denoted by $\|\cdot\|$ satisfying:
i) $\|x\| \geq 0$ and $\|x\|=0 \Longleftrightarrow x=0$,
ii) For any $\lambda \in \mathbb{R},\|\lambda x\|=|\lambda|\|x\|$,
iii) $\|x+y\| \leq\|x\|+\|y\|$.

Prove that every norm defines a metric.
2) (10 pts) Let M be a metric space with metric d. Show that d_{1} defined by

$$
d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

is also a metric on M. Observe that M itself is bounded in this metric.
3) (10 pts) Let A and B be two subsets of a metric space M. Recall that A°, the interior of A, is the set of interior points of A. Prove the following:

$$
\text { a) } A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ}, \quad \text { b) } A^{\circ} \cap B^{\circ}=(A \cap B)^{\circ}
$$

Give an example of two subsets A and B of the real line such that $A^{\circ} \cup B^{\circ} \neq(A \cup B)^{\circ}$.
4) (10 pts) Let A be a subset of a metric space M. Recall that \bar{A}, the closure of A, is the union of A and its limit points. Recall that a point x belongs to the boundary of $A, \partial A$, if every open ball centered at x contains points of A and points of A^{c}, the complement of A. Prove that:
a) $\partial A=\bar{A} \cap \overline{A^{c}}$,
b) $p \in \partial A \Longleftrightarrow p$ is in \bar{A}, but not in A° (symbolically, $\partial A=\bar{A} \backslash A^{\circ}$),
c) ∂A is a closed set,
d) A is closed $\Longleftrightarrow \partial A \subseteq A$.
5) (10 pts) Show that, in \mathbb{R}^{n} with the usual (Euclidean) metric, the closure of the open ball $B_{R}(p)$, $R>0$, is the closed ball

$$
\left\{q \in \mathbb{R}^{n}: d(p, q) \leq R\right\} .
$$

Given an example of a metric space for which the corresponding statement is false.
6) (10 pts) Prove directly form the definition that the set $K \subseteq \mathbb{R}$ given by

$$
K=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots \frac{1}{n}, \ldots\right\}
$$

is compact.
7) (10 pts) Let K be a compact subset of a metric space M, and let $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in I}$ be an open cover of K. Show that there is a positive real number δ with the property that for every $x \in K$ there is some $\alpha \in A$ with

$$
B_{\delta}(x) \subseteq \mathcal{U}_{\alpha}
$$

Extra problems:

1) Let M be a non-empty set, and let d be a real-valued function of ordered pairs of elements of M satisfying
i) $d(x, y)=0 \Longleftrightarrow x=y$,
ii) $d(x, y) \leq d(x, z)+d(y, z)$.

Show that d is a metric on M.
2) Determine the boundaries of the following sets, $A \subseteq X$:
i) $A=\mathbb{Q}, X=\mathbb{R}$
ii) $A=\mathbb{R} \backslash \mathbb{Q}, X=\mathbb{R}$
iii) $A=(\mathbb{Q} \times \mathbb{Q}) \cap B_{R}(0), X=\mathbb{R}^{2}$
3) Describe the interior of the Cantor set.
4) Let M be a metric space with metric d, and let d_{1} be the metric defined above (in problem 2). Show that the two metric spaces $(M, d),\left(M, d_{1}\right)$ have the same open sets.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

