SOLUTIONS TO PS2

Xiaoguang Ma

Problem 1.

Proof. It is true that for any two sets A, B, the intersection $A \cap B$ is a subset of A. Now consider $\phi=A \cap A^{c}$. So ϕ is a subset of A for any set A.

Problem 2.

Proof. Notice that

$$
\| x|-|y|| \leq|x-y| \Leftrightarrow|x|-|y| \leq|x-y| \text { and }|y|-|x| \leq|x-y|
$$

So we only need to prove that

$$
|x| \leq|x-y|+|y| \text { and }|y| \leq|x-y|+|x| .
$$

But both of them is a consequence from the triangle inequality $|a-b| \leq|a-c|+$ $|b-c|$.

Problem 3.

(a) $M=\left\{\frac{|x|}{1+|x|}: x \in \mathbb{R}\right\}$.

Proof. Notice that

$$
\frac{|x|}{1+|x|}=\frac{1}{\frac{1}{|x|}+1}
$$

so if $|x|<|y|$ then

$$
\frac{|x|}{1+|x|}<\frac{|y|}{1+|y|}
$$

Thus the supremum is $\frac{1}{0+1}=1$ and the infimum is $\frac{0}{1+0}=0$.
(b) $M=\left\{\left.\frac{x}{1+x} \right\rvert\, x>-1\right\}$.

Proof. We can change the variable x to y,

$$
\frac{x}{1+x}=\frac{y-1}{y}=1-\frac{1}{y},
$$

where $y=x+1$. From $x>-1$, we have $y>0$. Notice that

$$
y \text { increases } \Rightarrow \frac{1}{y} \text { decreases } \Rightarrow\left(1-\frac{1}{y}\right) \text { increases, }
$$

so the supremum is $1-0=1$ and the infimum is $-\infty$ (because for every $N>1$ we have

$$
\frac{\left(\frac{N}{1-N}\right)}{1+\left(\frac{N}{1-N}\right)}=-N
$$

and so the infimum is less than $-N$).
(c) $M=\left\{\left.x+\frac{1}{x} \right\rvert\, 1 / 2<x<2\right\}$.

Proof. It is always true that

$$
\frac{a+b}{2} \geq \sqrt{a b}
$$

for instance, if square both sides and rearrange, this is the same as saying $a^{2}+b^{2} \geq 0$. Thus, we see that

$$
x+\frac{1}{x} \geq 2 \sqrt{x \frac{1}{x}}=2
$$

Since setting $x=1$ in $x+\frac{1}{x}$ we get 2 , we know that $\inf M=2$.
Suppose we have $x_{1}>x_{2}$, consider

$$
\begin{aligned}
& x_{1}+\frac{1}{x_{1}}-\left(x_{2}+\frac{1}{x_{2}}\right) \\
= & \left(x_{1}-x_{2}\right)+\frac{x_{2}-x_{1}}{x_{1} x_{2}} \\
= & \frac{\left(x_{1}-x_{2}\right)\left(x_{1} x_{2}-1\right)}{x_{1} x_{2}}
\end{aligned}
$$

So if $x_{1}, x_{2}>1$, then

$$
x_{1}+\frac{1}{x_{1}}-\left(x_{2}+\frac{1}{x_{2}}\right)=\frac{\left(x_{1}-x_{2}\right)\left(x_{1} x_{2}-1\right)}{x_{1} x_{2}}>0,
$$

i.e. $x+\frac{1}{x}$ is an increasing function; if $x_{1}, x_{2}<1$, then

$$
x_{1}+\frac{1}{x_{1}}-\left(x_{2}+\frac{1}{x_{2}}\right)=\frac{\left(x_{1}-x_{2}\right)\left(x_{1} x_{2}-1\right)}{x_{1} x_{2}}<0
$$

i.e. $x+\frac{1}{x}$ is an decreasing function. Then the sup must be obtained at the boundary of $(1 / 2,2)$.

Since

$$
\lim _{x \rightarrow 2}\left(x+\frac{1}{x}\right)=\lim _{x \rightarrow 1 / 2}\left(x+\frac{1}{x}\right)=\frac{5}{2},
$$

we have $\sup M=\frac{5}{2}$.

Problem 4.

Proof. The answer is:

n	30	42	66	78	102	114	138	174	186	70	110
p 1	2	2	2	2	2	2	2	2	2	2	2
p 2	3	3	3	3	3	3	3	3	3	5	5
p 3	5	7	11	13	17	19	23	29	31	7	11
	n	130	170	190	154	182	105	165	195		
	p 1	2	2	2	2	2	3	3	3		
	p 2	5	5	5	7	7	5	5	5		
	p 3	13	17	19	11	13	7	11	13		

Problem 5.

Proof. From $X \sim \mathbb{R}$, then there is a 1-1 mapping $\alpha: X \rightarrow \mathbb{R}$. Similarly we have a 1-1 mapping $\beta: Y \rightarrow \mathbb{N}$. So to prove $Z=X \cup Y \sim \mathbb{R}$, we only need to prove that there is a $1-1$ mapping $\gamma: Z \rightarrow \mathbb{R}$. It is equivalent to show that there is $1-1$ mapping $\delta: \mathbb{N} \cup \mathbb{R} \rightarrow \mathbb{R}$. The δ can be constructed by the following method:

$$
\begin{array}{cl}
\delta(x)=x & , \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\
\delta(x)=x & , \text { if } x \in \mathbb{Z} \subset \mathbb{R} \text { and } x \leq 0 \\
\delta(x)=2 x & , \text { if } x \in \mathbb{Z} \subset \mathbb{R} \text { and } x>0 \\
\delta(x)=2 x+1 & , \text { if } x \in \mathbb{N}
\end{array}
$$

It is easy to check that it is an $1-1$ mapping.

Problem 6.

Proof. Consider the sets

$$
\begin{aligned}
& A_{0}=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \\
& A_{1}=\left\{\left.\frac{1}{n}+1 \right\rvert\, n \in \mathbb{N}\right\} \\
& A_{2}=\left\{\left.\frac{1}{n}+2 \right\rvert\, n \in \mathbb{N}\right\}
\end{aligned}
$$

Then A_{i} has only one limit point i, for $i=0,1,2$. If let $A=\bigcup_{i=0}^{2} A_{i}$, we get a bounded set A with three limit points.

Consider the set

$$
\mathcal{A}=\left\{\frac{1}{n}+\frac{1}{m}: n, m \in \mathbb{N}\right\}
$$

we check that the limit points of \mathcal{A} are precisely the points in $A_{0} \cup\{0\}$. Indeed, if we fix $n_{0} \in \mathbb{N}$ then the set

$$
\left\{\frac{1}{n_{0}}+\frac{1}{m}: m \in \mathbb{N}\right\}
$$

has $\frac{1}{n_{0}}$ as a limit point and is a subset of \mathcal{A}, hence \mathcal{A} has $\frac{1}{n_{0}}$ as a limit point, for any n_{0} in \mathbb{N}. Also $A_{0} \subseteq \mathcal{A}$ so zero is a limit point of \mathcal{A}. To see that there are no other limit points, pick a point $x \in \mathbb{R}$ that is not equal to $\frac{1}{n}$ for any $n \in \mathbb{N}$, we show that x is not a limit point of \mathcal{A}. We can find $N \in \mathbb{N}$ such that

$$
\frac{1}{N}<x<\frac{1}{N-1}
$$

Pick $\varepsilon>0$ small enough so that

$$
\frac{1}{N}<x-\varepsilon<x<x+\varepsilon<\frac{1}{N-1}
$$

and notice that there are at most finitely many elements of \mathcal{A} in $(x-\varepsilon, x+\varepsilon)$. Here is one way to see this: if n and m are both bigger than $2 N$ then $\frac{1}{n}+\frac{1}{m}<\frac{1}{N}$, if $n<N$ then $\frac{1}{n}+\frac{1}{m}>\frac{1}{N-1}$, while if $2 N \geq n>N$ then

$$
\frac{1}{N}<\frac{1}{n}+\frac{1}{m} \Longleftrightarrow-\frac{1}{m}<\frac{1}{n}-\frac{1}{N}=\frac{N-n}{n N} \Longleftrightarrow m<\frac{n N}{n-N}
$$

finally if $n=N$, and m is large enough then $\frac{1}{n}+\frac{1}{m}<x-\varepsilon$. So there are finitely many possible pairs (n, m) with $x-\varepsilon<\frac{1}{n}+\frac{1}{m}<x+\varepsilon$.

Since there are only finitely many elements of \mathcal{A} inside $(x-\varepsilon, x+\varepsilon)$ we can find $k \in \mathbb{N}$ so that $\left(x-\frac{\varepsilon}{k}, x+\frac{\varepsilon}{k}\right)$ contains no element of \mathcal{A} except possibly x itself. This proves that x is not a limit point of \mathcal{A}.

Problem 7.

Proof. (a) The points in E^{0} are interior points of E, to show that E^{0} is open we need to show that they are interior points of E^{0}. Given $x \in E^{0}$, by definition, there exist a open ball $x \in B_{r}(x) \subset E$. Consider an open ball $B_{r / 3}(x) \subset B_{r}(x)$. Then for any point $y \in B_{r / 3}(x), B_{r / 3}(y) \subset B_{r}(x) \subset E$, so $y \in E^{0}$. Then $B_{r / 3}(x)$ is an open ball in E^{0}. So x is an interior point of E^{0}.
(b)If $E=E^{0}$, from (a) we know that E is open. Conversely, if E is open, all points in E are interior points, so $E \subset E^{0}$. From $E^{0} \subset E$ we have $E=E^{0}$.
(c) Since G is open, so for any point $g \in G$, we have an open ball $B_{r}(g) \subset G \subset E$. So g is also an interior point of E. Then $G \subset E^{0}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

