18.100B Problem Set 2

Due Friday September 22, 2006 by 3 PM

Problems:

1) (10 pts) Prove that the empty set is a subset of every set.
2) (10 pts) If x, y are complex, prove that

$$
\|x|-|y| \| \leq|x-y| .
$$

(Hint: This is equivalent to proving the following two inequalities: $|x| \leq|x-y|+|y|$ and $|y| \leq|x-y|+|x|$. Why?)
3) (10 pts) Find $\sup M$ and $\inf M$ for:
a) $M=\left\{\frac{|x|}{1+|x|}: x \in \mathbb{R}\right\}$,
b) $M=\left\{\frac{x}{1+x}: x>-1\right\}$,
c) $M=\left\{x+\frac{1}{x}: \frac{1}{2}<x<2\right\}$.
4) $(10 \mathrm{pts})$ Let:
a) S be the set of all natural numbers that are not divisible by a square number;
b) T be the set of all natural numbers that have exactly three prime divisors;
c) U be the set of all natural numbers that are less or equal than 200 .

Determine $S \cap T \cap U$ explicitly.
5) (10 pts) Let X and Y be two disjoint sets. Suppose further that $X \sim \mathbb{R}$ and that $Y \sim \mathbb{N}$ (i. e. the set Y is countable). Show that $Z=X \cup Y$ satisfies $Z \sim \mathbb{R}$.
6) (10 pts) Construct a bounded set of real numbers with exactly three limit points. In addition, construct a bounded set of real numbers with countably many limit points.
7) (10 pts) Let E be a subset of a metric space. The interior E° is defined by

$$
E^{\circ}=\{x \in E: x \text { is an interior point }\} .
$$

a) Prove that E° is always open.
b) Prove that E is open if and only if $E^{\circ}=E$.
c) If $G \subseteq E$ and G is open, prove that $G \subseteq E^{\circ}$.

Extra problems:

1) Consider the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ with $f(z)=1 / z$. Sketch the following sets in the complex plane:
a) $f(\mathbb{R} \backslash\{0\})$,
b) $f\left(B_{r}\right)$ where $B_{r}=\{z \in \mathbb{C}:|z|=r\}$ and $r>0$,
c) $f(i \mathbb{R} \backslash\{0\})$,
d) $f(A)$ where $A=\{z \in \mathbb{C}: \operatorname{Re} z=1\}$.
[Recall that, for a given function $f: X \rightarrow Y$, the set $f(E)=\{f(x): x \in E\}$ is the image of a subset $E \subseteq X$ under f.]
2) A complex number z is said to be algebraic if there are integers a_{0}, \ldots, a_{n}, not all zero, such that

$$
a_{0} z^{n}+a_{1} z^{n}+\cdots+a_{n-1} z+a_{n}=0
$$

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N there are only finitely many equations with

$$
n+\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|=N
$$

3) If you think of the existence of a 1-1 map from A into B as saying that A is 'not bigger than' B (think \leq). Then this exercise proves that: if A is not bigger than B and B is not bigger than A, then A and B are the same size.
Prove the Schroeder-Bernstein theorem
If A and B are any two sets, f is a $1-1$ map from A into B and g is a $1-1$ map from B into A, then there exists a map F from A to B which is 1-1 and onto, i.e., $A \sim B$.
by the following steps (due to Birkhoff and MacLane):
i) Define 'ancestors' as follows: Let $a \in A$, if $a \in g(B)$ then we call $g^{-1}(a)$ the first ancestor of a (we call a itself the zero ${ }^{\text {th }}$ ancestor of a). If $g^{-1}(a)$ is in $f(A)$ then we call $f^{-1}\left(g^{-1}(a)\right)$ the second ancestor of a. If this is in the image of g, then we call $g^{-1}\left(f^{-1}\left(g^{-1}(a)\right)\right)$ the third ancestor of a and so on.
Show that this divides A into three disjoint subsets: A_{∞} made up of the elements that have infinitely many ancestors, A_{e} made up of the elements that have an even number of ancestors, and A_{o} made up of the elements that have an odd number of ancestors.
ii) Show that you can partition B into three similar subsets: B_{∞}, B_{e}, and B_{o}.
iii) Identify $f\left(A_{\infty}\right), f\left(A_{e}\right)$, and $f\left(A_{o}\right)$.
iv) Define

$$
F(a)= \begin{cases}f(a) & \text { if } a \in A_{\infty} \cap A_{e} \\ g^{-1}(a) & \text { if } a \in A_{o}\end{cases}
$$

and show that F is a 1-1 correspondence between A and B.
4) Show that if $S q=[0,1] \times[0,1]$ is the unit square and $I=[0,1]$ is one of its sides, then $S q \sim I$.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

