18.100B Problem Set 2

Due Friday September 22, 2006 by 3 PM

Problems:

- 1) (10 pts) Prove that the empty set is a subset of every set.
- 2) (10 pts) If x, y are complex, prove that

$$||x| - |y|| \le |x - y|.$$

(*Hint:* This is equivalent to proving the following two inequalities: $|x| \leq |x-y| + |y|$ and $|y| \le |x - y| + |x|$. Why?)

3) (10 pts) Find $\sup M$ and $\inf M$ for:

a)
$$M = \left\{ \frac{|x|}{1 + |x|} : x \in \mathbb{R} \right\},\,$$

b)
$$M = \left\{ \frac{x}{1+x} : x > -1 \right\}$$

a)
$$M = \left\{ \frac{|x|}{1+|x|} : x \in \mathbb{R} \right\}$$
,
b) $M = \left\{ \frac{x}{1+x} : x > -1 \right\}$,
c) $M = \left\{ x + \frac{1}{x} : \frac{1}{2} < x < 2 \right\}$.

- 4) (10 pts) Let:
 - a) S be the set of all natural numbers that are not divisible by a square number;
 - b) T be the set of all natural numbers that have exactly three prime divisors;
 - c) U be the set of all natural numbers that are less or equal than 200.

Determine $S \cap T \cap U$ explicitly.

- 5) (10 pts) Let X and Y be two disjoint sets. Suppose further that $X \sim \mathbb{R}$ and that $Y \sim \mathbb{N}$ (i.e. the set Y is countable). Show that $Z = X \cup Y$ satisfies $Z \sim \mathbb{R}$.
- 6) (10 pts) Construct a bounded set of real numbers with exactly three limit points. In addition, construct a bounded set of real numbers with countably many limit points.
- 7) (10 pts) Let E be a subset of a metric space. The interior E° is defined by

$$E^{\circ} = \{x \in E : x \text{ is an interior point}\}.$$

- a) Prove that E° is always open.
- b) Prove that E is open if and only if $E^{\circ} = E$.
- c) If $G \subseteq E$ and G is open, prove that $G \subseteq E^{\circ}$.

Extra problems:

- 1) Consider the function $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ with f(z) = 1/z. Sketch the following sets in the complex plane:
 - a) $f(\mathbb{R} \setminus \{0\})$,
 - b) $f(B_r)$ where $B_r = \{z \in \mathbb{C} : |z| = r\}$ and r > 0,
 - c) $f(i\mathbb{R} \setminus \{0\}),$
 - d) f(A) where $A = \{z \in \mathbb{C} : \operatorname{Re} z = 1\}.$

[Recall that, for a given function $f: X \to Y$, the set $f(E) = \{f(x) : x \in E\}$ is the *image* of a subset $E \subseteq X$ under f.]

2) A complex number z is said to be algebraic if there are integers a_0, \ldots, a_n , not all zero, such that

$$a_0z^n + a_1z^n + \dots + a_{n-1}z + a_n = 0.$$

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N there are only finitely many equations with

$$n + |a_0| + |a_1| + \dots + |a_n| = N.$$

3) If you think of the existence of a 1-1 map from A into B as saying that A is 'not bigger than' B (think \leq). Then this exercise proves that: if A is not bigger than B and B is not bigger than A, then A and B are the same size.

Prove the Schroeder-Bernstein theorem

If A and B are any two sets, f is a 1-1 map from A into B and g is a 1-1 map from B into A, then there exists a map F from A to B which is 1-1 and onto, i.e., $A \sim B$.

by the following steps (due to Birkhoff and MacLane):

i) Define 'ancestors' as follows: Let $a \in A$, if $a \in g(B)$ then we call $g^{-1}(a)$ the first ancestor of a (we call a itself the zeroth ancestor of a). If $g^{-1}(a)$ is in f(A) then we call $f^{-1}(g^{-1}(a))$ the second ancestor of a. If this is in the image of g, then we call $g^{-1}(f^{-1}(g^{-1}(a)))$ the third ancestor of a and so on.

Show that this divides A into three disjoint subsets: A_{∞} made up of the elements that have infinitely many ancestors, A_e made up of the elements that have an even number of ancestors, and A_o made up of the elements that have an odd number of ancestors.

- ii) Show that you can partition B into three similar subsets: B_{∞} , B_e , and B_o .
- iii) Identify $f(A_{\infty})$, $f(A_e)$, and $f(A_o)$.
- iv) Define

$$F(a) = \begin{cases} f(a) & \text{if } a \in A_{\infty} \cap A_{e} \\ g^{-1}(a) & \text{if } a \in A_{o} \end{cases}$$

and show that F is a 1-1 correspondence between A and B.

4) Show that if $Sq = [0,1] \times [0,1]$ is the unit square and I = [0,1] is one of its sides, then $Sq \sim I$.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.