18.100B Problem Set 1 Solutions Sawyer Tabony

1) The proof is by contradiction. Assume $\exists r \in \mathbb{Q}$ such that $r^2 = 12$. Then we may write r as $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and we can assume that a and b have no common factors. Then

$$12 = r^2 = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2},$$

so $12b^2 = a^2$.

Notice that 3 divides $12b^2$ and hence 3 divides a^2 . It follows that 3 has to divide a (one way to see this: every integer can be written as either 3n, 3n + 1, or 3n + 2 for some integer n. If you square these three choices, only the first one gives you a multiple of three.)

Let a = 3k, for $k \in \mathbb{Z}$. Then substitution yields $12b^2 = (3k)^2 = 9k^2$, so dividing by 3 we have $4b^2 = 3k^2$, so 3 divides $4b^2$ and hence 3 divides b^2 . Just as for a, this implies that b has to divide b. But then a and b share the common factor of 3, which contradicts our choice of representation of r. So there is no rational number whose square is 12.

- 2) $S \subseteq \mathbb{R}, S \neq \emptyset$, and $u = \sup S$. Given any $n \in \mathbb{N}, \forall s \in S, s \leq u < u + \frac{1}{n}$, so $u + \frac{1}{n}$ is an upper bound for S. Assume $u - \frac{1}{n}$ is also an upper bound for S. Since $u - \frac{1}{n} < u$, u would not be the least upper bound for S, which is a contradiction. Therefore $u - \frac{1}{n}$ is not an upper bound for S.
- 3) Recall that a subset of the real numbers, $A \subseteq \mathbb{R}$, is bounded if there are real numbers a and a' such that

 $t \in A \implies a' \le t \le a.$

Since $A, B \subseteq \mathbb{R}$ are bounded, they have upper bounds a and b respectively, and lower bounds a' and b'. Let $\alpha = \max(a, b)$ and $\beta = \min(a', b')$. Clearly,

$$t \in A \implies \beta \le a' \le t \le a \le \alpha$$
$$t \in B \implies \beta \le b' \le t \le b \le \alpha,$$

hence any $t \in A \cup B$ satisfies $\beta \leq t \leq \alpha$ and $A \cup B$ is bounded.

Notice that, in particular, this shows that $\max\{\sup A, \sup B\}$ is an upper bound for $A \cup B$, so we only have to show that it is the *least* upper bound. Suppose $\gamma < \max\{\sup A, \sup B\}$. Then without loss of generality, $\gamma < \sup A$. By definition of supremum, γ is not an upper bound of A, so $\exists a \in A$ with $\gamma < a$. But $a \in A \Rightarrow a \in A \cup B$, so γ is not an upper bound of $A \cup B$. Therefore $\max\{\sup A, \sup B\} = \sup A \cup B$.

- 4) Start by noting that, if $n, m \in \mathbb{N}$ then $b^n b^m = b^{n+m}$ from which it follows that $b^n b^m = b^{n+m}$ for $n, m \in \mathbb{Z}$ (why?). Similarly, you can show that $b^{nm} = (b^n)^m$ for $n, m \in \mathbb{Z}$. Recall that, if x > 0, then $x^{\frac{1}{n}}$ is defined to be the *unique* positive real number such that $\left(x^{\frac{1}{n}}\right)^n = x$.
 - a) We have that m/n = p/q so mq = pn. Notice that $\left((b^m)^{\frac{1}{n}}\right)^{n\dot{q}} = (b^m)^q = b^{mq}$ and that $\left((b^p)^{\frac{1}{q}}\right)^{nq} = (b^p)^n = b^{pn}$, which is also equal to b^{mq} . But we know that there is a *unique* real

number y satisfying $y^{nq} = b^{mq}$ hence the two numbers we started with have to be equal, i.e.,

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}.$$

Notice that if this equality didn't hold, then we could not make sense of the symbol b^r for $r \in \mathbb{Q}$, because the value would change if we wrote the same number r in two different ways.

b) Let $r, s \in \mathbb{Q}$ with $r = \frac{m}{n}$ and $s = \frac{p}{q}$. Since nq is an integer we know that $(b^r b^s)^{nq} = (b^r)^{nq} (b^s)^{nq}$

but $(b^r)^{nq} = \left((b^m)^{\frac{1}{n}} \right)^{nq} = (b^m)^q = b^{mq}$ and similarly $(b^s)^{nq} = b^{np}$. Since mq and np are integers we can conclude

$$(b^r b^s)^{nq} = b^{mq} b^{np} = b^{mq+np}.$$

But there is a unique positive real number, y, such that $y^{nq} = b^{mq+np}$, so we know that

$$b^r b^s = (b^{mq+np})^{\frac{1}{nq}} = b^{\frac{mq+np}{nq}} = b^{\frac{m}{n} + \frac{p}{q}} = b^{r+s}.$$

- c) Now with b > 1, given $r, s \in \mathbb{Q}$, $s \le r$ we want to show $b^s \le b^r$. Let $r s = \frac{m}{n}$, 0 < n, $0 \le m$ since $s \le r$. Then $b^{r-s} = (b^m)^{\frac{1}{n}}$, and it is easy to see that $1 \le b^m$, since $0 \le m$ and 1 < b. Thus a positive power of b^{r-s} is greater than or equal to 1, which implies $1 \le b^{r-s}$. Multiplying by b^s gives $b^s \le b^{r-s}b^s = b^{(r-s)+s} = b^r$, so $b^s \le b^r$. Hence for any $b^s \in B(r)$, $s \le r \Rightarrow b^s \le b^r$, so b^r is an upper bound for B(r). Since $b^r \in B(r)$, b^r must be the least upper bound, so $b^r = \sup B(r)$.
- d) So let $x, y \in \mathbb{R}$. If $r, s \in \mathbb{Q}$ are such that $r \leq x, s \leq y$, then $r + s \leq x + y$ so $b^{r+s} \in B(x+y)$ and $b^r b^s \leq b^{x+y}$. Keeping s fixed, notice that for any $r \leq x$ we have

$$b^r \le \frac{b^{x+y}}{b^s},$$

thus $\frac{b^{x+y}}{b^s}$ is an upper bound for B(x) which implies $b^x \leq \frac{b^{x+y}}{b^s}$. We rearrange this to

$$b^s \le \frac{b^{x+y}}{b^x}$$

and conclude that $b^y \leq \frac{b^{x+y}}{b^x}$ or $b^x b^y \leq b^{x+y}$.

Suppose the inequality is strict. Then $\exists t \in \mathbb{Q}, t < x + y$, such that $b^x b^y < b^{t-1}$. We will find $r, s \in \mathbb{Q}$, with $r \leq x, s \leq y$ and t < r + s < x + y. First, find $N \in \mathbb{N}$ so that N(x + y - t) > 1, then find $r \in \mathbb{Q}$ so that $x - \frac{1}{2N} < r < x$ and $s \in \mathbb{Q}$ such that $y - \frac{1}{2N} < s < y$ (the existence of N, r, s follow from the Archimedean property of \mathbb{R} as shown in class). Now, notice that

$$N(x+y-t) > 1 \implies t < x+y - \frac{1}{N},$$

$$x - \frac{1}{2N} < r < x \text{ and } y - \frac{1}{2N} < s < y \implies x+y - \frac{1}{N} < r+s < x+y$$
we have $t < r + s < x+y$ just like we wanted

hence we have t < r + s < x + y just like we wanted.

¹This is true even if $x + y \in \mathbb{Q}$, notice that $\sup B(x + y) = \sup \{b^t : t \in \mathbb{Q}, t < x + y\}$

But now we have

$$b^x b^y < b^t < b^{r+s} = b^r b^s$$

which is a contradiction because, since r < x and s < y, we have $b^r < b^x$ and $b^s < b^{y}!^{-2}$

- 5) We know that in any ordered field, squares are greater than or equal to zero. Since $i^2 = -1$, this means that $0 \leq -1$. But then $1 = 0 + 1 \leq -1 + 1 = 0 \leq 1$ which implies 0 = 1, a contradiction!
- 6) I'll write ≪ for this relation on C to distinguish it from the normal order on R. To show that ≪ is an order on C, we must show both transitivity and totality (or given x, y ∈ C, exactly one of the following is true: x ≪ y, y ≪ x, or x = y). First for transitivity, let x, y, z ∈ C, x = a + bi, y = c + di, z = e + fi such that x ≪ y ≪ z. Therefore a ≤ c ≤ e, so a ≤ e by the transitivity of the order on R. If a < e, then x ≪ z, so we are done. If a = e, then a = c = e so we have from the definition of ≪ that b < d < f, so once again by the transitivity of the order on R, b < f. Now a = e and b < f ⇒ x ≪ z, so we have shown transitivity.</p>

Now to show totality. Consider $x, y \in \mathbb{C}$, x = a + bi, y = c + di. Without loss of generality, let $a \leq c$. Suppose a = c. Then $b < d \Leftrightarrow x \ll y$, $b > d \Leftrightarrow y \ll x$, and $b = d \Leftrightarrow x = y$, so by the totality of the order on \mathbb{R} , we have the totality of \ll on \mathbb{C} in the case of a = c. Suppose instead that a < c. Then we know $x \ll y$, and it is not the case that $y \ll x$ or x = y, so we have totality in this case as well. Thus we have proven that \ll is an order on \mathbb{C} .

This order does not have the least-upper-bound property. Consider the set of complex numbers with real part less than or equal to zero:

$$S = \{a + bi : a \le 0, b \in \mathbb{R}\}.$$

S is bounded above, for instance by the number 1, but it is not possible for any number z = a+bi to be the supremum of S. If $a \leq 0$, then $a + bi \ll a + (b+1)i \in S$, so a + bi is not an upper bound for S. If a > 0, then $a + (b-1)i \ll a + bi$, and a + (b-1)i is also an upper bound for S, so a + bi is not the least upper bound. Therefore S has no least upper bound, even though it is bounded above.

7) $x, y \in \mathbb{R}^k$, so let $x = (a_1, a_2, ..., a_k), y = (b_1, b_2, ..., b_k)$. Then

$$|x+y|^{2} + |x-y|^{2} = \sum_{i=1}^{k} (a_{i}+b_{i})^{2} + \sum_{j=1}^{k} (a_{j}-b_{j})^{2} = \sum_{i=1}^{k} \left[(a_{i}+b_{i})^{2} + (a_{i}-b_{i})^{2} \right]$$
$$= \sum_{i=1}^{k} (a_{i}^{2} + 2a_{i}b_{i} + b_{i}^{2} + a_{i}^{2} - 2a_{i}b_{i} + b_{i}^{2}) = \sum_{i=1}^{k} (2a_{i}^{2} + 2b_{i}^{2}) = 2(|x|)^{2} + 2(|y|)^{2}.$$

The geometric interpretation comes from looking at the parallelogram whose vertices are the points 0, x, x + y and y. Then the equation states that the sum of the squares of the lengths of the two diagonals (the vectors x + y and x - y) is the same as the sum of the squares of the lengths of the four sides.

²A different proof of $b^{x+y} \leq b^x b^y$ could start by justifying $b^z = \inf\{b^r : r \in \mathbb{Q}, r \geq z\}$ and then proceeding as in the proof of $b^x b^y \leq b^{x+y}$.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.