18.100B Problem Set 1 Solutions
 Sawyer Tabony

1) The proof is by contradiction. Assume $\exists r \in \mathbb{Q}$ such that $r^{2}=12$. Then we may write r as $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and we can assume that a and b have no common factors. Then

$$
12=r^{2}=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}},
$$

so $12 b^{2}=a^{2}$.
Notice that 3 divides $12 b^{2}$ and hence 3 divides a^{2}. It follows that 3 has to divide a (one way to see this: every integer can be written as either $3 n, 3 n+1$, or $3 n+2$ for some integer n. If you square these three choices, only the first one gives you a multiple of three.)

Let $a=3 k$, for $k \in \mathbb{Z}$. Then substitution yields $12 b^{2}=(3 k)^{2}=9 k^{2}$, so dividing by 3 we have $4 b^{2}=3 k^{2}$, so 3 divides $4 b^{2}$ and hence 3 divides b^{2}. Just as for a, this implies that b has to divide b. But then a and b share the common factor of 3 , which contradicts our choice of representation of r. So there is no rational number whose square is 12 .
2) $S \subseteq \mathbb{R}, S \neq \emptyset$, and $u=\sup S$. Given any $n \in \mathbb{N}, \forall s \in S, s \leq u<u+\frac{1}{n}$, so $u+\frac{1}{n}$ is an upper bound for S. Assume $u-\frac{1}{n}$ is also an upper bound for S. Since $u-\frac{1}{n}<u$, u would not be the least upper bound for S, which is a contradiction. Therefore $u-\frac{1}{n}$ is not an upper bound for S.
3) Recall that a subset of the real numbers, $A \subseteq \mathbb{R}$, is bounded if there are real numbers a and a^{\prime} such that

$$
t \in A \Longrightarrow a^{\prime} \leq t \leq a .
$$

Since $A, B \subseteq \mathbb{R}$ are bounded, they have upper bounds a and b respectively, and lower bounds a ' and $b \prime$. Let $\alpha=\max (a, b)$ and $\beta=\min (a \prime, b \prime)$. Clearly,

$$
\begin{aligned}
& t \in A \Longrightarrow \beta \leq a^{\prime} \leq t \leq a \leq \alpha \\
& t \in B \Longrightarrow \beta \leq b^{\prime} \leq t \leq b \leq \alpha,
\end{aligned}
$$

hence any $t \in A \cup B$ satisfies $\beta \leq t \leq \alpha$ and $A \cup B$ is bounded.
Notice that, in particular, this shows that $\max \{\sup A, \sup B\}$ is an upper bound for $A \cup B$, so we only have to show that it is the least upper bound. Suppose $\gamma<\max \{\sup A, \sup B\}$. Then without loss of generality, $\gamma<\sup A$. By definition of supremum, γ is not an upper bound of A, so $\exists a \in A$ with $\gamma<a$. But $a \in A \Rightarrow a \in A \cup B$, so γ is not an upper bound of $A \cup B$. Therefore $\max \{\sup A, \sup B\}=\sup A \cup B$.
4) Start by noting that, if $n, m \in \mathbb{N}$ then $b^{n} b^{m}=b^{n+m}$ from which it follows that $b^{n} b^{m}=b^{n+m}$ for $n, m \in \mathbb{Z}$ (why?). Similarly, you can show that $b^{n m}=\left(b^{n}\right)^{m}$ for $n, m \in \mathbb{Z}$. Recall that, if $x>0$, then $x^{\frac{1}{n}}$ is defined to be the unique positive real number such that $\left(x^{\frac{1}{n}}\right)^{n}=x$.
a) We have that $m / n=p / q$ so $m q=p n$. Notice that $\left(\left(b^{m}\right)^{\frac{1}{n}}\right)^{n q}=\left(b^{m}\right)^{q}=b^{m q}$ and that $\left(\left(b^{p}\right)^{\frac{1}{q}}\right)^{n q}=\left(b^{p}\right)^{n}=b^{p n}$, which is also equal to $b^{m q}$. But we know that there is a unique real
number y satisfying $y^{n q}=b^{m q}$ hence the two numbers we started with have to be equal, i.e.,

$$
\left(b^{m}\right)^{\frac{1}{n}}=\left(b^{p}\right)^{\frac{1}{q}} .
$$

Notice that if this equality didn't hold, then we could not make sense of the symbol b^{r} for $r \in \mathbb{Q}$, because the value would change if we wrote the same number r in two different ways.
b) Let $r, s \in \mathbb{Q}$ with $r=\frac{m}{n}$ and $s=\frac{p}{q}$. Since $n q$ is an integer we know that

$$
\left(b^{r} b^{s}\right)^{n q}=\left(b^{r}\right)^{n q}\left(b^{s}\right)^{n q}
$$

but $\left(b^{r}\right)^{n q}=\left(\left(b^{m}\right)^{\frac{1}{n}}\right)^{n q}=\left(b^{m}\right)^{q}=b^{m q}$ and similarly $\left(b^{s}\right)^{n q}=b^{n p}$. Since $m q$ and $n p$ are integers we can conclude

$$
\left(b^{r} b^{s}\right)^{n q}=b^{m q} b^{n p}=b^{m q+n p} .
$$

But there is a unique positive real number, y, such that $y^{n q}=b^{m q+n p}$, so we know that

$$
b^{r} b^{s}=\left(b^{m q+n p}\right)^{\frac{1}{n q}}=b^{\frac{m q+n p}{n q}}=b^{\frac{m}{n}+\frac{p}{q}}=b^{r+s} .
$$

c) Now with $b>1$, given $r, s \in \mathbb{Q}, s \leq r$ we want to show $b^{s} \leq b^{r}$. Let $r-s=\frac{m}{n}, 0<n, 0 \leq m$ since $s \leq r$. Then $b^{r-s}=\left(b^{m}\right)^{\frac{1}{n}}$, and it is easy to see that $1 \leq b^{m}$, since $0 \leq m$ and $1<b$.
Thus a positive power of b^{r-s} is greater than or equal to 1 , which implies $1 \leq b^{r-s}$. Multiplying by b^{s} gives $b^{s} \leq b^{r-s} b^{s}=b^{(r-s)+s}=b^{r}$, so $b^{s} \leq b^{r}$. Hence for any $b^{s} \in B(r), s \leq r \Rightarrow b^{s} \leq b^{r}$, so b^{r} is an upper bound for $B(r)$. Since $b^{r} \in B(r), b^{r}$ must be the least upper bound, so $b^{r}=\sup B(r)$.
d) So let $x, y \in \mathbb{R}$. If $r, s \in \mathbb{Q}$ are such that $r \leq x, s \leq y$, then $r+s \leq x+y$ so $b^{r+s} \in B(x+y)$ and $b^{r} b^{s} \leq b^{x+y}$. Keeping s fixed, notice that for any $r \leq x$ we have

$$
b^{r} \leq \frac{b^{x+y}}{b^{s}}
$$

thus $\frac{b^{x+y}}{b^{s}}$ is an upper bound for $B(x)$ which implies $b^{x} \leq \frac{b^{x+y}}{b^{s}}$. We rearrange this to

$$
b^{s} \leq \frac{b^{x+y}}{b^{x}}
$$

and conclude that $b^{y} \leq \frac{b^{x+y}}{b^{x}}$ or $b^{x} b^{y} \leq b^{x+y}$.
Suppose the inequality is strict. Then $\exists t \in \mathbb{Q}, t<x+y$, such that $b^{x} b^{y}<b^{t}$. We will find $r, s \in \mathbb{Q}$, with $r \leq x, s \leq y$ and $t<r+s<x+y$. First, find $N \in \mathbb{N}$ so that $N(x+y-t)>1$, then find $r \in \mathbb{Q}$ so that $x-\frac{1}{2 N}<r<x$ and $s \in \mathbb{Q}$ such that $y-\frac{1}{2 N}<s<y$ (the existence of N, r, s follow from the Archimedean property of \mathbb{R} as shown in class). Now, notice that

$$
\begin{gathered}
N(x+y-t)>1 \Longrightarrow t<x+y-\frac{1}{N} \\
x-\frac{1}{2 N}<r<x \text { and } y-\frac{1}{2 N}<s<y \Longrightarrow x+y-\frac{1}{N}<r+s<x+y
\end{gathered}
$$

hence we have $t<r+s<x+y$ just like we wanted.

[^0]But now we have

$$
b^{x} b^{y}<b^{t}<b^{r+s}=b^{r} b^{s}
$$

which is a contradiction because, since $r<x$ and $s<y$, we have $b^{r}<b^{x}$ and $b^{s}<b^{y}$! ${ }^{2}$
5) We know that in any ordered field, squares are greater than or equal to zero. Since $i^{2}=-1$, this means that $0 \leq-1$. But then $1=0+1 \leq-1+1=0 \leq 1$ which implies $0=1$, a contradiction!
6) I'll write \ll for this relation on \mathbb{C} to distinguish it from the normal order on \mathbb{R}. To show that \ll is an order on \mathbb{C}, we must show both transitivity and totality (or given $x, y \in \mathbb{C}$, exactly one of the following is true: $x \ll y, y \ll x$, or $x=y$). First for transitivity, let $x, y, z \in \mathbb{C}, x=a+b i$, $y=c+d i, z=e+f i$ such that $x \ll y \ll z$. Therefore $a \leq c \leq e$, so $a \leq e$ by the transitivity of the order on \mathbb{R}. If $a<e$, then $x \ll z$, so we are done. If $a=e$, then $a=c=e$ so we have from the definition of \ll that $b<d<f$, so once again by the transitivity of the order on $\mathbb{R}, b<f$. Now $a=e$ and $b<f \Rightarrow x \ll z$, so we have shown transitivity.

Now to show totality. Consider $x, y \in \mathbb{C}, x=a+b i, y=c+d i$. Without loss of generality, let $a \leq c$. Suppose $a=c$. Then $b<d \Leftrightarrow x \ll y, b>d \Leftrightarrow y \ll x$, and $b=d \Leftrightarrow x=y$, so by the totality of the order on \mathbb{R}, we have the totality of \ll on \mathbb{C} in the case of $a=c$. Suppose instead that $a<c$. Then we know $x \ll y$, and it is not the case that $y \ll x$ or $x=y$, so we have totality in this case as well. Thus we have proven that \ll is an order on \mathbb{C}.

This order does not have the least-upper-bound property. Consider the set of complex numbers with real part less than or equal to zero:

$$
S=\{a+b i: a \leq 0, b \in \mathbb{R}\}
$$

S is bounded above, for instance by the number 1 , but it is not possible for any number $z=a+b i$ to be the supremum of S. If $a \leq 0$, then $a+b i \ll a+(b+1) i \in S$, so $a+b i$ is not an upper bound for S. If $a>0$, then $a+(b-1) i \ll a+b i$, and $a+(b-1) i$ is also an upper bound for S, so $a+b i$ is not the least upper bound. Therefore S has no least upper bound, even though it is bounded above.
7) $x, y \in \mathbb{R}^{k}$, so let $x=\left(a_{1}, a_{2}, \ldots, a_{k}\right), y=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$. Then

$$
\begin{aligned}
|x+y|^{2}+|x-y|^{2} & =\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)^{2}+\sum_{j=1}^{k}\left(a_{j}-b_{j}\right)^{2}=\sum_{i=1}^{k}\left[\left(a_{i}+b_{i}\right)^{2}+\left(a_{i}-b_{i}\right)^{2}\right] \\
& =\sum_{i=1}^{k}\left(a_{i}^{2}+2 a_{i} b_{i}+b_{i}^{2}+a_{i}^{2}-2 a_{i} b_{i}+b_{i}^{2}\right)=\sum_{i=1}^{k}\left(2 a_{i}^{2}+2 b_{i}^{2}\right)=2(|x|)^{2}+2(|y|)^{2} .
\end{aligned}
$$

The geometric interpretation comes from looking at the parallelogram whose vertices are the points $0, x, x+y$ and y. Then the equation states that the sum of the squares of the lengths of the two diagonals (the vectors $x+y$ and $x-y$) is the same as the sum of the squares of the lengths of the four sides.

[^1]MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ This is true even if $x+y \in \mathbb{Q}$, notice that $\sup B(x+y)=\sup \left\{b^{t}: t \in \mathbb{Q}, t<x+y\right\}$

[^1]: ${ }^{2}$ A different proof of $b^{x+y} \leq b^{x} b^{y}$ could start by justifying $b^{z}=\inf \left\{b^{r}: r \in \mathbb{Q}, r \geq z\right\}$ and then proceeding as in the proof of $b^{x} b^{y} \leq b^{x+y}$.

