SOLUTIONS TO PS 10 Xiaoguang Ma

Solution/Proof of Problem 1. From the definition, we can find that

$$f_n(t) = (\frac{2}{3})^n f_0(t) + \sum_{k=0}^{n-1} (\frac{2}{3})^k.$$

Notice that $\lim_{n\to\infty} \sum_{k=0}^{n-1} (\frac{2}{3})^k = \frac{1}{1-2/3} = 3$ and since $|f_0(t)| = |\sin t| \le 1$ we have $|f_n - 3| \le |(\frac{2}{3})^n| + |\sum_{k=0}^{n-1} (\frac{2}{3})^k - 3|$ so we have $\forall \epsilon > 0$,

- $\exists N_1 \ s.t. \ \forall n > N_1, \ (\frac{2}{3})^n < \frac{\epsilon}{3};$
- $\exists N_2 \ s.t. \ \forall n > N_1, \ |\sum_{k=0}^{n-1} (\frac{2}{3})^k 3| < \frac{\epsilon}{3}.$

So take $N = \max\{N_1, N_2\}$, and we have $\forall n > N$,

$$|f_n - 3| \le |(\frac{2}{3})^n| + |\sum_{k=0}^{n-1} (\frac{2}{3})^k - 3| \le \frac{2\epsilon}{3} < \epsilon.$$

So $f_n \to 3$ uniformly on \mathbb{R} .

In general, since $f_n(x) = T^n(f_0(x))$, T is a contraction, and the fixed point of T is 3, we always have pointwise convergence of f_n to 3. However, from the argument above we see that this is uniform convergence if and only if the function f_0 is bounded. Thus for $f_0(t) = t^2$, the convergence is uniform on any bounded subset of \mathbb{R} , but not on all of \mathbb{R} .

Solution/Proof of Problem 2. Since $t \ge 0$, we have $0 \le \phi(t) \le \frac{t}{2+t} \le \frac{t}{2}$. So we have

$$0 \le f_n(t) = \phi(f_{n-1}(t)) \le \frac{1}{2} f_n(t) \le \dots \le \frac{1}{2^n} f_0(t) = \frac{1}{2^n} \phi(t) \le \frac{1}{2^n} \frac{t}{2+t} \le \frac{1}{2^n}.$$

From the convergence of $\sum \frac{1}{2^n}$, we have $\sum_{n=0}^{K} f_n(t) \to F(t)$ uniformly, since each partial sum $\sum_{n=0}^{K} f_n(t)$ is continuous, this implies that F is continuous.

Solution/Proof of Problem 3. Since differentiability is a local property, we only need to prove that f is differentiable on every subset $(-s,s) \subset \mathbb{R}$.

We have

$$\frac{d}{dt}\sin^2(\frac{t}{k}) = \frac{2}{k}\sin(\frac{t}{k})\cos(\frac{t}{k}) = \frac{1}{k}\sin(\frac{2t}{k}),$$

so if $F_n(t) = \sum_{k=1}^n \sin^2(\frac{t}{k})$, then

$$\frac{d}{dt}F_n = \sum_{\substack{k=1\\1}}^n \frac{1}{k}\sin(\frac{2t}{k}).$$

We can use $|\sin x| \leq |x|$ to see that $F'_n(t)$ is uniformly Cauchy; indeed, whenever n < m we have

$$\begin{split} \|F'_n - F'_m\| &= \sup_{t \in [-s,s]} \left|\sum_{k=n}^m \frac{1}{k} \sin(\frac{2t}{k})\right| \le \sup_{t \in [-s,s]} \sum_{k=n}^m \left|\frac{1}{k} \sin(\frac{2t}{k})\right| \\ &\le \sup_{t \in [-s,s]} \sum_{k=n}^m \frac{1}{k} \left(\frac{2|t|}{k}\right) = 2s \sum_{k=n}^m \frac{1}{k^2} \end{split}$$

and since $\sum \frac{1}{k^2}$ converges, we can make this last sum as small as we like. It follows that $F'_n(t)$ converges uniformly, it's also clear that $F_n(0) \to 0$. From Theorem 7.17, we know that $F_n(t)$ converges to a function F(t) such that F'(t) exists and $F'(t) = \lim_{n \to \infty} F'_n(t)$. So we get the conclusion.

Solution/Proof of Problem 4. Since $f_n \to f$ uniformly, and f_n are continuous, so is f. Now for any $\epsilon > 0$, we have

- $\exists N_1, s.t. \ \forall n > N_1, and \ \forall x \in E, \ |f(x) f_n(x)| < \frac{\epsilon}{3};$ $\exists \delta > 0, s.t. \ \forall |x y| < \delta, \ |f(y) f(x)| < \frac{\epsilon}{3};$
- $\exists N_2, s.t. \forall n > N_2, |x x_n| < \delta.$

So we have for $n > \max\{N_1, N_2\}$,

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| \le \frac{2\epsilon}{3} \le \epsilon.$$

So we get the conclusion.

The converse can be formulated different ways. Here's one that's true: If (f_n) is a sequence of continuous functions that converge pointwise to a function f on a compact set E, and $\lim_{y\to x} f(y)$ always exists, then

 $f_n \to f$ uniformly $\iff \lim_{n \to \infty} f_n(x_n) = \lim_{n \to \infty} f(x_n)$ whenever (x_n) converges.

The proof of \rightarrow is above, to prove \leftarrow assume that f_n does not converge to f uniformly. This implies that

for some $\varepsilon_0 > 0$ and for every $N \in \mathbb{N}$

there exists n > N such that $||f_n(x_n) - f(x_n)|| > \varepsilon_0$

 \iff for some $\varepsilon_0 > 0$ and for every $N \in \mathbb{N}$

there exists n > N and $y_n \in E$ such that $|f_n(y_n) - f(y_n)| > \varepsilon_0$

Since E is compact, the sequence (y_n) has a convergent subsequence, which we denote (x_n) . Say that $\lim_{n\to\infty} f(x_n) = L$ and find $N' \in \mathbb{N}$ such that n > N'implies $|f(x_n) - L| < \varepsilon_0/2$. Then, for any n > N' we have $|f_n(x_n) - L| > \varepsilon_0/2$ and hence

$$\lim_{n \to \infty} f_n\left(x_n\right) \neq \lim_{n \to \infty} f\left(x_n\right),$$

which proves the converse.

Notice that if we do not require the original sequence to be continuous, then the converse is not true. Take $E = \mathbb{R}$. Consider a sequence of functions

$$f_n(x) = \begin{cases} 0 & x \in (-n, n) \\ 1 & otherwise \end{cases}$$

Then f_n converge to 0 pointwise and f_n does not converge uniformly to 0. But we can easily see that for any convergent sequence $\{x_n\}, f_n(x_n) \to 0$.

Solution/Proof of Problem 5. Form condition (b), we have

$$0 \le \int_0^\infty f_n(t)dt \le \int_0^\infty e^{-t} = 1.$$

So we have

$$0 \le \lim_{T \to \infty} \int_T^\infty f_n(t) dt \le \lim_{T \to \infty} \int_T^\infty e^{-t} = 0.$$

So for $\frac{\varepsilon}{3} > 0$, $\exists S \ s.t. \ \forall n$

$$0 \le \int_{S}^{\infty} f_n(t) dt \le \int_{S}^{\infty} e^{-t} \le \frac{\varepsilon}{3}.$$

On the other hand, from condition (a), we have for $\frac{\varepsilon}{3S} > 0$, $\exists N \ s.t. \ \forall n > N$

$$\int_0^S f_n(t)dt \le \int_0^S \frac{\varepsilon}{3S}dt = \frac{\varepsilon}{3}$$

So we have for $\varepsilon > 0$, $\exists N \ s.t. \ \forall n > N$

$$\int_{0}^{\infty} f_{n}(t)dt \leq \int_{0}^{S} f_{n}(t)dt + \int_{S}^{\infty} f_{n}(t)dt \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon$$

So $\lim_{n \to \infty} \int_0^\infty f_n(t) dt = 0.$

Condition (b) is necessary. In fact, we can consider $f_n(t) = \frac{t}{n}$, which satisfies condition (a). It is clear that the conclusion does not hold.

Solution/Proof of Problem 6. Since $\{f_n\}$ is equicontinuous, so for any $\frac{\varepsilon}{3} > 0$, $\exists \delta > 0$ s.t. for any two points $x, y \in K$, if $|x - y| < \delta$, then $|f_n(x) - f_n(y)| < \frac{\varepsilon}{3}$. Now consider an open covering $K = \bigcup_{x \in K} D_{\delta}(x)$ where $D_{\delta}(x)$ is a disc with

Now consider an open covering $K = \bigcup_{x \in K} D_{\delta}(x)$ where $D_{\delta}(x)$ is a disc with center x and radius δ . Since K is compact, we can find finite disc to cover K. Let $K = \bigcup_{i=1}^{n} D_{\delta}(x_i)$, .

For any $x \in K$, we have $x \in D_{\delta}(x_i)$ for some x_i . So $|f_n(x) - f_n(x_i)| < \frac{\varepsilon}{3}$. For each i, $f_n(x_i) \to f(x_i)$, we have for $\frac{\varepsilon}{3} > 0$, $\exists N_i > 0$, s.t. $\forall n > N_i$, $|f_n(x_i) - f(x_i)| < \frac{\varepsilon}{3}$. Let $N = \max_i N_i$, so $\forall n > N$, $|f_n(x_i) - f(x_i)| < \frac{\varepsilon}{3}$ for any i. So $\forall m, n > N$

$$|f_m(x) - f_n(x)| \le |f_m(x) - f_m(x_i)| + |f_m(x_i) - f_n(x_i)| + |f_n(x_i) - f_n(x)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \le \varepsilon$$

So $f_n \to f$ uniformly.

Solution/Proof of Problem 7. Since f'_n is uniformly bounded, so there exists M s.t. $|f'_n(x)| \leq M, \forall x, n$.

For any $x \leq y$, by MVT, we have $\exists \xi \in [x, y]$ s.t.

 $|f_n(x) - f_n(y)| = |f'_n(\xi)(x - y)| \le M|x - y|.$

So for any $\epsilon > 0$, $\exists \delta = \epsilon/M > 0$ s.t. $\forall x, y, |x - y| < \delta$, $|f_n(x) - f_n(y)| < \epsilon$.

So f_n is equicontinuous. Then from Arzela-Ascoli theorem, we got the conclusion.

MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.