SOLUTIONS TO PS 10

Xiaoguang Ma

Solution/Proof of Problem 1. From the definition, we can find that

$$
f_{n}(t)=\left(\frac{2}{3}\right)^{n} f_{0}(t)+\sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}
$$

Notice that $\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}=\frac{1}{1-2 / 3}=3$ and since $\left|f_{0}(t)\right|=|\sin t| \leq 1$ we have $\left|f_{n}-3\right| \leqslant\left|\left(\frac{2}{3}\right)^{n}\right|+\left|\sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}-3\right|$ so we have $\forall \epsilon>0$,

- $\exists N_{1}$ s.t. $\forall n>N_{1},\left(\frac{2}{3}\right)^{n}<\frac{\epsilon}{3}$;
- $\exists N_{2}$ s.t. $\forall n>N_{1},\left|\sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}-3\right|<\frac{\epsilon}{3}$.

So take $N=\max \left\{N_{1}, N_{2}\right\}$, and we have $\forall n>N$,

$$
\left|f_{n}-3\right| \leqslant\left|\left(\frac{2}{3}\right)^{n}\right|+\left|\sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}-3\right| \leqslant \frac{2 \epsilon}{3}<\epsilon
$$

So $f_{n} \rightarrow 3$ uniformly on \mathbb{R}.
In general, since $f_{n}(x)=T^{n}\left(f_{0}(x)\right)$, T is a contraction, and the fixed point of T is 3, we always have pointwise convergence of f_{n} to 3 . However, from the argument above we see that this is uniform convergence if and only if the function f_{0} is bounded. Thus for $f_{0}(t)=t^{2}$, the convergence is uniform on any bounded subset of \mathbb{R}, but not on all of \mathbb{R}.

Solution/Proof of Problem 2. Since $t \geq 0$, we have $0 \leq \phi(t) \leq \frac{t}{2+t} \leq \frac{t}{2}$. So we have

$$
0 \leq f_{n}(t)=\phi\left(f_{n-1}(t)\right) \leq \frac{1}{2} f_{n}(t) \leq \cdots \leq \frac{1}{2^{n}} f_{0}(t)=\frac{1}{2^{n}} \phi(t) \leq \frac{1}{2^{n}} \frac{t}{2+t} \leq \frac{1}{2^{n}}
$$

From the convergence of $\sum \frac{1}{2^{n}}$, we have $\sum_{n=0}^{K} f_{n}(t) \rightarrow F(t)$ uniformly, since each partial sum $\sum_{n=0}^{K} f_{n}(t)$ is continuous, this implies that F is continuous.

Solution/Proof of Problem 3. Since differentiability is a local property, we only need to prove that f is differentiable on every subset $(-s, s) \subset \mathbb{R}$.

We have

$$
\frac{d}{d t} \sin ^{2}\left(\frac{t}{k}\right)=\frac{2}{k} \sin \left(\frac{t}{k}\right) \cos \left(\frac{t}{k}\right)=\frac{1}{k} \sin \left(\frac{2 t}{k}\right)
$$

so if $F_{n}(t)=\sum_{k=1}^{n} \sin ^{2}\left(\frac{t}{k}\right)$, then

$$
\frac{d}{d t} F_{n}=\sum_{k=1}^{n} \frac{1}{k} \sin \left(\frac{2 t}{k}\right)
$$

We can use $|\sin x| \leq|x|$ to see that $F_{n}^{\prime}(t)$ is uniformly Cauchy; indeed, whenever $n<m$ we have

$$
\begin{aligned}
\left\|F_{n}^{\prime}-F_{m}^{\prime}\right\| & =\sup _{t \in[-s, s]}\left|\sum_{k=n}^{m} \frac{1}{k} \sin \left(\frac{2 t}{k}\right)\right| \leq \sup _{t \in[-s, s]} \sum_{k=n}^{m}\left|\frac{1}{k} \sin \left(\frac{2 t}{k}\right)\right| \\
& \leq \sup _{t \in[-s, s]} \sum_{k=n}^{m} \frac{1}{k}\left(\frac{2|t|}{k}\right)=2 s \sum_{k=n}^{m} \frac{1}{k^{2}}
\end{aligned}
$$

and since $\sum \frac{1}{k^{2}}$ converges, we can make this last sum as small as we like. It follows that $F_{n}^{\prime}(t)$ converges uniformly, it's also clear that $F_{n}(0) \rightarrow 0$. From Theorem 7.17, we know that $F_{n}(t)$ converges to a function $F(t)$ such that $F^{\prime}(t)$ exists and $F^{\prime}(t)=\lim _{n \rightarrow \infty} F_{n}^{\prime}(t)$. So we get the conclusion.

Solution/Proof of Problem 4. Since $f_{n} \rightarrow f$ uniformly, and f_{n} are continuous, so is f. Now for any $\epsilon>0$, we have

- $\exists N_{1}$, s.t. $\forall n>N_{1}$, and $\forall x \in E,\left|f(x)-f_{n}(x)\right|<\frac{\epsilon}{3}$;
- $\exists \delta>0$, s.t. $\forall|x-y|<\delta,|f(y)-f(x)|<\frac{\epsilon}{3}$;
- $\exists N_{2}$, s.t. $\forall n>N_{2},\left|x-x_{n}\right|<\delta$.

So we have for $n>\max \left\{N_{1}, N_{2}\right\}$,

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right| \leq \frac{2 \epsilon}{3} \leq \epsilon
$$

So we get the conclusion.
The converse can be formulated different ways. Here's one that's true: If $\left(f_{n}\right)$ is a sequence of continuous funtions that converge pointwise to a function f on a compact set E, and $\lim _{y \rightarrow x} f(y)$ always exists, then

$$
f_{n} \rightarrow f \text { uniformly } \Longleftrightarrow \lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \text { whenever }\left(x_{n}\right) \text { converges. }
$$

The proof of \rightarrow is above, to prove \leftarrow assume that f_{n} does not converge to f uniformly. This implies that

$$
\begin{aligned}
& \text { for some } \varepsilon_{0}>0 \text { and for every } N \in \mathbb{N} \\
& \text { there exists } n>N \text { such that }\left\|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right\|>\varepsilon_{0} \\
& \Longleftrightarrow \text { for some } \varepsilon_{0}>0 \text { and for every } N \in \mathbb{N} \\
& \text { there exists } n>N \text { and } y_{n} \in E \text { such that }\left|f_{n}\left(y_{n}\right)-f\left(y_{n}\right)\right|>\varepsilon_{0}
\end{aligned}
$$

Since E is compact, the sequence $\left(y_{n}\right)$ has a convergent subsequence, which we denote $\left(x_{n}\right)$. Say that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ and find $N^{\prime} \in \mathbb{N}$ such that $n>N^{\prime}$ implies $\left|f\left(x_{n}\right)-L\right|<\varepsilon_{0} / 2$. Then, for any $n>N^{\prime}$ we have $\left|f_{n}\left(x_{n}\right)-L\right|>\varepsilon_{0} / 2$ and hence

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

which proves the converse.
Notice that if we do not require the original sequence to be continuous, then the converse is not true. Take $E=\mathbb{R}$. Consider a sequence of functions

$$
f_{n}(x)=\left\{\begin{array}{cc}
0 & x \in(-n, n) \\
1 & \text { otherwise }
\end{array}\right.
$$

Then f_{n} converge to 0 pointwise and f_{n} does not converge uniformly to 0 . But we can easily see that for any convergent sequence $\left\{x_{n}\right\}, f_{n}\left(x_{n}\right) \rightarrow 0$.

Solution/Proof of Problem 5. Form condition (b), we have

$$
0 \leq \int_{0}^{\infty} f_{n}(t) d t \leq \int_{0}^{\infty} e^{-t}=1
$$

So we have

$$
0 \leq \lim _{T \rightarrow \infty} \int_{T}^{\infty} f_{n}(t) d t \leq \lim _{T \rightarrow \infty} \int_{T}^{\infty} e^{-t}=0
$$

So for $\frac{\varepsilon}{3}>0, \exists S$ s.t. $\forall n$

$$
0 \leq \int_{S}^{\infty} f_{n}(t) d t \leq \int_{S}^{\infty} e^{-t} \leq \frac{\varepsilon}{3}
$$

On the other hand, from condition (a), we have for $\frac{\varepsilon}{3 S}>0, \exists N$ s.t. $\forall n>N$

$$
\int_{0}^{S} f_{n}(t) d t \leq \int_{0}^{S} \frac{\varepsilon}{3 S} d t=\frac{\varepsilon}{3}
$$

So we have for $\varepsilon>0, \exists N$ s.t. $\forall n>N$

$$
\int_{0}^{\infty} f_{n}(t) d t \leq \int_{0}^{S} f_{n}(t) d t+\int_{S}^{\infty} f_{n}(t) d t \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon
$$

So $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(t) d t=0$.
Condition (b) is necessary. In fact, we can consider $f_{n}(t)=\frac{t}{n}$, which satisfies condition (a). It is clear that the conclusion does not hold.

Solution/Proof of Problem 6. Since $\left\{f_{n}\right\}$ is equicontinuous, so for any $\frac{\varepsilon}{3}>0$, $\exists \delta>0$ s.t. for any two points $x, y \in K$, if $|x-y|<\delta$, then $\left|f_{n}(x)-f_{n}(y)\right|<\frac{\varepsilon}{3}$.

Now consider an open covering $K=\bigcup_{x \in K} D_{\delta}(x)$ where $D_{\delta}(x)$ is a disc with center x and radius δ. Since K is compact, we can find finite disc to cover K. Let $K=\bigcup_{i=1}^{n} D_{\delta}\left(x_{i}\right)$,

For any $x \in K$, we have $x \in D_{\delta}\left(x_{i}\right)$ for some x_{i}. So $\left|f_{n}(x)-f_{n}\left(x_{i}\right)\right|<\frac{\varepsilon}{3}$.
For each i, $f_{n}\left(x_{i}\right) \rightarrow f\left(x_{i}\right)$, we have for $\frac{\varepsilon}{3}>0, \exists N_{i}>0$, s.t. $\forall n>N_{i}$, $\left|f_{n}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}$. Let $N=\max _{i} N_{i}$, so $\forall n>N,\left|f_{n}\left(x_{i}\right)-f\left(x_{i}\right)\right|<\frac{\varepsilon}{3}$ for any i.

So $\forall m, n>N$
$\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(x)-f_{m}\left(x_{i}\right)\right|+\left|f_{m}\left(x_{i}\right)-f_{n}\left(x_{i}\right)\right|+\left|f_{n}\left(x_{i}\right)-f_{n}(x)\right| \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \leq \varepsilon$.
So $f_{n} \rightarrow f$ uniformly.
Solution/Proof of Problem 7. Since f_{n}^{\prime} is uniformly bounded, so there exists M s.t. $\left|f_{n}^{\prime}(x)\right| \leq M, \forall x, n$.

For any $x \leq y$, by MVT, we have $\exists \xi \in[x, y]$ s.t.

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|f_{n}^{\prime}(\xi)(x-y)\right| \leq M|x-y|
$$

So for any $\epsilon>0, \exists \delta=\epsilon / M>0$ s.t. $\forall x, y,|x-y|<\delta,\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$.
So f_{n} is equicontinuous. Then from Arzela-Ascoli theorem, we got the conclusion.

MIT OpenCourseWare
http://ocw.mit.edu

18.100B Analysis I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

