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SOLUTIONS TO PS 10
 Xiaoguang Ma 

Solution/Proof of Problem 1. From the definition, we can find that 

n−1 

fn(t) = ( 
2
)nf0(t) + (

2
)k . 

3 3 
k=0 

n−1 
Notice that limn�� ( 23 )

k = 1− 
1
2/3 = 3 and since |f0(t)| = | sin t| ← 1 we have 

k=0 
n−1 

|fn − 3| � |( 23 )
n| + | ( 3

2 )k − 3| so we have �δ > 0, 
k=0 

•	 �N1 s.t. �n > N1, ( 23 )
n < 3 

� ;
 
n−1
 

• �N2 s.t. �n > N1, | ( 23 )
k − 3| < 3 

� . 
k=0 

So take N = max{N1, N2}, and we have �n > N , 

n−1 

|fn − 3| � |(
2
)n| + | (

2
)k − 3| � 

2δ 
< δ. 

3 3 3 
k=0 

So fn ∀ 3 uniformly on R. 
In general, since fn(x) = T n(f0(x)), T is a contraction, and the fixed point 

of T is 3, we always have pointwise convergence of fn to 3. However, from the 
argument above we see that this is uniform convergence if and only if the function 
f0 is bounded. Thus for f0(t) = t2 , the convergence is uniform on any bounded 
subset of R, but not on all of R. 

Solution/Proof of Problem 2. Since t ∃ 0, we have 0 ← ξ(t) ← t ← t . So2+t 2 
we have 

1 1 1 1 t 1 
0 ← fn(t) = ξ(fn−1(t)) ← fn(t) ← · · · ← f0(t) = ξ(t) ← ← . 

2 2n 2n 2n 2 + t 2n 

� 1 �K
From the convergence of 2 , we have n=0 fn(t) ∀ F (t) uniformly, since 

n 
�Keach partial sum n=0 fn(t) is continuous, this implies that F is continuous. 

Solution/Proof of Problem 3. Since differentiability is a local property, we only 
need to prove that f is differentiable on every subset (−s, s) ≤ R. 

We have 
d t 2 t t 1 2t 

sin2( ) = sin( ) cos( ) = sin( ),
dt k k k k k k 

so if Fn(t) = n
k=1 sin

2( k
t ), then 

n
d 1 2t 

Fn = sin( ). 
dt k k 

k=1 
1 
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We can use | sin x| ← |x| to see that Fn 
→ (t) is uniformly Cauchy; indeed, whenever 

n < m we have 
m	 m 

� 1 2t � 1 2t 
∈F → − F → ∈ = sup | sin( )| ← sup | sin( )|n m

t�[−s,s] k=n 
k k t�[−s,s] k=n 

k k 

m � � m 
� 1 2|t| � 1 

←	 sup = 2s 
k k k2 

t�[−s,s] k=n k=n 

and since k 
1 
2 converges, we can make this last sum as small as we like. It follows 

that Fn 
→ (t) converges uniformly, it’s also clear that Fn(0) ∀ 0. From Theorem 

7.17, we know that Fn(t) converges to a function F (t) such that F →(t) exists and 
F →(t) = limn�� Fn 

→ (t). So we get the conclusion. 

Solution/Proof of Problem 4. Since fn ∀ f uniformly, and fn are continuous, 
so is f . Now for any δ > 0, we have 

•	 �N1, s.t. �n > N1, and �x ≥ E, |f(x) − fn(x)| < 3 
� ; 

•	 �� > 0, s.t. �|x − y| < �, |f(y) − f(x)| < 3 
� ; 

•	 �N2, s.t. �n > N2, |x − xn| < �. 

So we have for n > max{N1, N2}, 

2δ 
|fn(xn) − f(x)| ← |fn(xn) − f(xn)| + |f(xn) − f(x)| ← ← δ. 

3 
So we get the conclusion. 

The converse can be formulated different ways. Here’s one that’s true: If (fn) 
is a sequence of continuous funtions that converge pointwise to a function f on a 
compact set E, and limy�x f(y) always exists, then 

fn ∀ f uniformly ⇒→ lim fn (xn) = lim f (xn) whenever (xn) converges. 
n�� n�� 

The proof of ∀ is above, to prove � assume that fn does not converge to f uni
formly. This implies that 

for some �0 > 0 and for every N ≥ N 

there exists n > N such that ∈fn(xn) − f(xn)∈ > �0 

⇒→ for some �0 > 0 and for every N ≥ N 

there exists n > N and yn ≥ E such that |fn(yn) − f(yn)| > �0 

Since E is compact, the sequence (yn) has a convergent subsequence, which we 
denote (xn). Say that limn�� f (xn) = L and find N → ≥ N such that n > N → 

implies |f (xn) − L| < �0/2. Then, for any n > N → we have |fn (xn) − L| > �0/2 
and hence 

lim fn (xn) =⊂ lim f (xn) , 
n�� n�� 

which proves the converse. 
Notice that if we do not require the original sequence to be continuous, then the 

converse is not true. Take E = R. Consider a sequence of functions 

0 x ≥ (−n, n)
fn(x) = 

1 otherwise 

Then fn converge to 0 pointwise and fn does not converge uniformly to 0. But we 
can easily see that for any convergent sequence {xn}, fn(xn) ∀ 0. 
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Solution/Proof of Problem 5. Form condition (b), we have 

0 ← fn(t)dt ← e −t = 1. 
0 0 

So we have 

0 ← lim fn(t)dt ← lim e −t = 0. 
T �� T ��T T 

So for 3 
� > 0, �S s.t. �n 

0 ← fn(t)dt ← e −t ← . 
3S S 

On the other hand, from condition (a), we have for 3 
�
S > 0, �N s.t. �n > N 

� S � S 

fn(t)dt ← dt = . 
3S 30 0 

So we have for � > 0, �N s.t. �n > N 
� 

� � S � 
� 

fn(t)dt ← fn(t)dt + fn(t)dt ← + < �. 
3 30 0 S 

So lim 
0 fn(t)dt = 0. 

n�� 

Condition (b) is necessary. In fact, we can consider fn(t) = n
t , which satisfies 

condition (a). It is clear that the conclusion does not hold. 

Solution/Proof of Problem 6. Since {fn} is equicontinuous, so for any 3 
� > 0, 

�� > 0 s.t. for any two points x, y ≥ K, if 
� |x − y| < �, then |fn(x) − fn(y)| < 3 

� . 
Now consider an open covering K = x�K D�(x) where D� (x) is a disc with 

center x and radius �. Since K is compact, we can find finite disc to cover K. Let 
K = 

� 
i
n 
=1 D� (xi), . 

For any x ≥ K, we have x ≥ D�(xi) for some xi. So |fn(x) − fn(xi)| < 3 
� . 

For each i, fn(xi) ∀ f(xi), we have for 3 
� > 0, �Ni > 0, s.t. �n > Ni, 

|fn(xi) − f(xi)| < 3 
� . Let N = maxi Ni, so �n > N , |fn(xi) − f(xi)| < 3 

� for any i. 
So �m, n > N 

|fm(x)−fn(x)| ← |fm(x)−fm(xi)|+|fm(xi)−fn(xi)|+|fn(xi)−fn(x)| ← + + ← �. 
3 3 3 

So fn ∀ f uniformly. 

Solution/Proof of Problem 7. Since fn 
→ is uniformly bounded, so there exists 

M s.t. |fn 
→ (x)| ← M, �x, n. 

For any x ← y, by MVT, we have �� ≥ [x, y] s.t. 

|fn(x) − fn(y)| = |fn 
→ (�)(x − y)| ← M |x − y|. 

So for any δ > 0, �� = δ/M > 0 s.t. �x, y, |x − y| < �, |fn(x) − fn(y)| < δ. 
So fn is equicontinuous. Then from Arzela-Ascoli theorem, we got the conclu

sion. 
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