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18.100B Problem Set 10
 

Due Friday December 8, 2006 by 3 PM 

Problems: 
1) Let (fn) be the sequence of functions on R defined as follows. 

2 
f0(t) = sin t and fn+1(t) = 

3
fn(t) + 1 for n ∈ N. 

Show that fn → 3 uniformly on R. What can you say if we choose f0(t) = t2?
 

Hint: Consider first the map T (x) = 2
3 x + 1 on R.
 

2) Suppose ϕ : [0, ∞) → R is continuous and satisfies 
t

0 ≤ ϕ(t) ≤ 
2 + t 

(t ≥ 0). 

Define the sequence (fn) by setting f0(t) = ϕ(t) and fn+1(t) = ϕ(fn(t)) for t ≥ 0 and n ∈ N. 
Prove that the series F (t) = ∞ fn(t) converges for every t ≥ 0 and that F is continuous on n=0 
[0, ∞). 

3) Does f(t) = ∞
k=1 sin

2(t/k) define a differentiable function on R? 

4) Suppose (fn) is a sequence of continuous functions such that fn → f uniformly on a set E. Prove 
that 

lim fn(xn) = f(x) 
n→∞

for every sequence of points xn ∈ E such that xn → x, and x ∈ E. Is the converse of this true? 

5) Suppose (fn) is a sequence of real-valued functions that are Riemann-integrable on all compact 
subintervals of [0, ∞). Assume further that: 

a) fn → 0 uniformly on every compact subset of [0, ∞); 

b) 0 ≤ fn(t) ≤ e−t for all t ≥ 0 and n ∈ N. 

Prove that � ∞
lim fn(t) dt = 0, 

n→∞ 0 

where the improper integral 
� ∞ 

fn(t) dt is defined as limb→∞ 
� b 

fn(t) dt. Moreover, give an 0 0 
explicit example for a sequence (fn), so that condition b) does not hold and the conclusion above 
fails. 

Remark: In fact, one can relax condition a) to “fn → 0 pointwise on [0, ∞).” But then the proof 
(of this “dominated convergence theorem”) becomes by far more involved when using Riemann’s 
theory of integration. 

6) Suppose (fn) is an equicontinuous sequence of functions on a compact set K, and fn f 
pointwise on K. Prove that fn → f uniformly on K. 

→ 

1 



7) Show that any uniformly bounded sequence of differentiable functions on a compact interval with 
uniformly bounded derivatives has a convergent subsequence. 
(Hint: To apply the Arzela-Ascoli theorem (Thm 7.25) from the book, show that any family F
of real-valued, differentiable functions f defined on [a, b], satisfying f �(x) ≤ M for some M and 
all x ∈ [a, b] and f ∈ F , must be equicontinuous.) 

| | 

Extra problems: 
1) In class, we have seen that uniform convergence of a sequence of bounded functions on a set E 

can be equivalently formulated in terms of the metric d(f, g) = supx∈E |f(x) − g(x) . That is, we 
have d(fn, f) → 0 if and only if fn → f uniformly on E. 

| 

Having this in mind, we could ask whether an analogous statement holds with respect to 
pointwise convergence. More specifically, is there a metric d(f, g) such that d(fn, f) 0 if and →
only if fn f pointwise on E? Surprisingly, it turns out that the answer is NO when, for 
example, E

→
= [0, 1]. We therefore cordially invite you to prove the following theorem. 

Theorem 1. There is no metric d(f, g) defined on C([0, 1]) such that d(fn, f) 0 if and only 
if fn → f pointwise on [0, 1]. 

→ 

Before proving this theorem, you may first show the following weaker statement whose proof 
requires less effort. 
Theorem 2. There is no norm � ·� defined on C([0, 1]) such that �fn� → 0 if and only if fn → 0 
pointwise on [0, 1]. 
Hint (for proof of Theorem 2). Consider fn ∈ C([0, 1]), with n = 1, 2, 3, . . ., such that 

i) For every x ∈ [0, 1], there exists n0 = n0(x) such that fn(x) = 0 if n ≥ n0. 
ii) fn �≡ 0 for every n ≥ 1. 

(A possible choice is, for instance, given by fn(x) = sin(nπx) if x ∈ [0, 1/n], and fn(x) = 0 if 
x ∈ [1/n, 1].) By clever choice of a sequence of real-valued numbers (cn), prove the claim by 
considering the sequence (cnfn). 
Hint (for proof of Theorem 1). Assume there is such a metric d(f, g) on C([0, 1]). Then fn → 0 
if and only if, for every k ∈ N, we have that fn ∈ N1/k(0) = {y ∈ C([0, 1]) : d(y, 0) < 1/k}, 
except for finitely many fn. Use this fact and the specific choice gn(x) = e−n|x−x0| for suitable 
x0 ∈ [0, 1] to show that gn → 0 pointwise on [0, 1], which is false! (Since g(x0) = 1 for all n.) 

2) Assume that (fn) is a sequence of monotonically increasing functions on R with 0 ≤ fn(x) ≤ 1 
for all x and all n. 
(a) Prove that there is a function f and a sequence (nk) such that 

f(x) = lim fnk (x) 
k→∞ 

for every x ∈ R. (This result is usually called Helly’s selection theorem.) 
(b) If, moreover, f is continuous, prove that fnk f uniformly on compact sets. →

Hint: (i) Some subsequence (fni ) converges at all rational points r, say, to f(r). (ii) Define 
f(x) = supr≤x f(r) for any x ∈ R. (iii) Show that fni (x) → f(x) at every x at which f is 
continuous. (This is where montonicity is strongly used.) (iv) A subsequence of (fni ) converges 
at every point of discontinuity of f , since there are at most countably many such points. This 
outlines the proof of (a). To prove (b), modify your proof of (iii) appropriately. 
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