18.100B Problem Set 1

Due Friday September 15, 2006 by 3 PM

Problems.

- 1) (10 pts) Prove that there is no rational number whose square is 12.
- 2) (10 pts) Let S be a non-empty subset of the real numbers, bounded above. Show that if $u = \sup S$, then for every natural number n, the number $u \frac{1}{n}$ is not an upper bound of S, but the number $u + \frac{1}{n}$ is an upper bound of S.
- 3) (10 pts) Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded subset of \mathbb{R} . Show that

$$\sup A \cup B = \max\{\sup A, \sup B\}$$

4) (20 pts) Fix b > 1. a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$$

- Hence it makes sense to define $b^r = (b^m)^{\frac{1}{n}}$. (How could it have failed to make sense?) b) Proce that $b^{r+s} = b^r b^s$ if r, s are rational.
- c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \le x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence it makes sense to define

 $b^x := \sup B\left(x\right)$

for every real x.

- d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.
- 5) (10 pts) Prove that no order can be defined in the complex field that turns it into an ordered field.

(*Hint:* -1 is a square.)

6) (10 pts) Suppose z = a + bi, w = c + di. Define

$$z < w$$
 if $a < c$ or $a = c, b < d$

Prove that this turns the set of all complex numbers into an ordered set. (This is known as a dictionary order, or lexicographic order.) Does this ordered set have the least-upper-bound property?

7) (10 pts) Prove that

$$|x+y|^{2} + |x-y|^{2} = 2|x|^{2} + 2|y|^{2}$$

if $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.

Extra problems:

1) (Another argument showing that $\sqrt{2} \notin \mathbb{Q}$) Show that, if $n^2 = 2m^2$, then

$$(2m-n)^2 = 2(n-m)^2.$$

Deduce that, if n and m are strictly positive integers with $n^2 = 2m^2$, we can find strictly positive integers n', m' with $(n')^2 = 2(m')^2$ and n' < n. Conclude that the equation $n^2 = 2m^2$ has no non-zero integer solutions.

2) Show that the square root of an integer is either an integer or irrational. (*Hint*: Every integer has a unique (up to order) factorization into a product of prime numbers, you can use this to show that if n is an integer and a prime p divides n^2 , then p divides n.) MIT OpenCourseWare http://ocw.mit.edu

18.100B Analysis I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.