Contents

Preface xi

1. Real Numbers and Monotone Sequences 1
1.1 Introduction; Real numbers 1
1.2 Increasing sequences 3
1.3 Limit of an increasing sequence 4
1.4 Example: the number $e 5$
1.5 Example: the harmonic sum and Euler's number $\gamma 8$
1.6 Decreasing sequences; Completeness property 10
2. Estimations and Approximations 17
2.1 Introduction; Inequalities 17
2.2 Estimations 18
2.3 Proving boundedness 20
2.4 Absolute values; estimating size 21
2.5 Approximations 24
2.6 The terminology "for n large" 2
3. The Limit of a Sequence 35
3.1 Definition of limit 35
3.2 Uniqueness of limits; the $K-\epsilon$ principle 38
3.3 Infinite limits
3.4 Limit of $a^{n} 42$
3.5 Writing limit proofs 43
3.6 Some limits involving integrals 44
3.7 Another limit involving an integra 45
4. The Error Term 51
4.1 The error term 51
4.2 The error in the geometric series; Applications 52
4.3 A sequence converging to $\sqrt{2}$: Newton's method 53
4.4 The sequence of Fibonacci fractions 56
5. Limit Theorems for Sequences 61
5.1 Limits of sums, products, and quotients 61
5.2 Comparison theorems 65.3 Location theorems 67
5.4 Subsequences; Non-existence of limits 68
5.5 Two common mistakes 71
6. The Completeness Property 78
6.1 Introduction; Nested intervals 78
6.2 Cluster points of sequences 80
6.3 The Bolzano-Weierstrass theorem 82
6.4 Cauchy sequences 83
6.5 Completeness property for sets 86
7. Infinite Series 94
7.1 Series and sequences 94
7.2 Elementary convergence tests 97
7.3 The convergence of series with negative terms 100
7.4 Convergence tests: ratio and n-th root tests 102
7.5 The integral and asymptotic comparison tests 104
7.6 Series with alternating signs: Cauchy's test 106
7.7 Rearranging the terms of a series 107
8. Power Series 114
8.1 Introduction; Radius of convergence 114
8.2 Convergence at the endpoints; Abel summation 117
8.3 Operations on power series: addition 119
8.4 Multiplication of power series 120
9. Functions of One Variable 125
9.1 Functions 125
9.2 Algebraic operations on functions 127
9.3 Some properties of functions 128
9.4 Inverse functions 131
9.5 The elementary functions 133
10. Local and Global Behavior 137
10.1 Intervals; estimating functions 137
10.2 Approximating functions 141
10.3 Local behavior 143
10.4 Local and global properties of functions 145
11. Continuity and Limits of Functions 151
11.1 Continuous functions 151
11.2 Limits of functions 155
11.3 Limit theorems for functions 158
11.4 Limits and continuous functions 162
11.5 Continuity and sequences 155
12. The Intermediate Value Theorem 172
12.1 The existence of zeros 172
12.2 Applications of Bolzano's theorem 175
12.3 Graphical continuity 17
12.4 Inverse functions 179
13. Continuous Functions on Compact Intervals 185
13.1 Compact intervals 185
13.2 Bounded continuous functions 186
13.3 Extremal points of continuous functions 187
13.4 The mapping viewpoint 189
13.5 Uniform continuity 190
14. Differentiation: Local Properties 196
14.1 The derivative 196
14.2 Differentiation formulas 200
14.3 Derivatives and local properties 202
15. Differentiation: Global Properties 210
15.1 The mean-value theorem 210
15.2 Applications of the mean-value theorem 212
15.3 Extension of the mean-value theorem 214
15.4 L'Hospital's rule for indeterminate forms 215
16. Linearization and Convexity 222
16.1 Linearization 222
16.2 Applications to convexity 225
17. Taylor Approximation 231
17.1 Taylor polynomials 231
17.2 Taylor's theorem with Lagrange remainder 233
17.3 Estimating error in Taylor approximation 235
17.4 Taylor series 236
18. Integrability 241
18.1 Introduction; Partitions 241
18.2 Integrability 242
18.3 Integrability of monotone and continuous functions 244
18.4 Basic properties of integrable functions 246
19. The Riemann Integral 251
19.1 Refinement of partitions 251
19.2 Definition of the Riemann integral 253
19.3 Riemann sums 255
19.4 Basic properties of integrals 257
19.5 The interval addition property 258
19.6 Piecewise continuous and monotone functions 260
20. Derivatives and Integrals 269
20.1 The first fundamental theorem of calculus 269
20.2 Existence and uniqueness of antiderivatives 270
20.3 Other relations between derivatives and integrals 274
20.4 The logarithm and exponential functions 276
20.5 Stirling's formula 278
20.6 Growth rate of functions 280
21. Improper Integrals 290
21.1 Basic definitions 290
21.2 Comparison theorems 292
21.3 The gamma function 295
21.4 Absolute and conditional convergence 298
22. Sequences and Series of Functions 305
22.1 Pointwise and uniform convergence 305
22.2 Criteria for uniform convergence 310
22.3 Continuity and uniform convergence 312
22.4 Integration term-by-term 314
22.5 Differentiation term-by-term 316
22.6 Power series and analytic functions 318
23. Infinite Sets and the Lebesgue Integral 329
23.1 Introduction; infinite sets 329
23.2 Sets of measure zero 333
23.3 Measure zero and Riemann-integrability 335
23.4 Lebesgue integration 338
24. Continuous Functions on the Plane 347
24.1 Introduction; Norms and distances in $\mathbb{R}^{2} 347$
24.2 Convergence of sequences 349
24.3 Functions on $\mathbb{R}^{2} 351$
24.4 Continuous functions 352
24.5 Limits and continuity 354
24.6 Compact sets in $\mathbb{R}^{2} 355$
24.7 Continuous functions on compact sets in $\mathbb{R}^{2} 356$
25. Point-sets in the Plane $\mathbf{3 6 4}$
25.1 Closed sets in $\mathbb{R}^{2} 364$
25.2 Compactness theorem in $\mathbb{R}^{2} 367$
25.3 Open sets 368
26. Integrals with a Parameter 375
26.1 Integrals depending on a parameter 375
26.2 Differentiating under the integral sign 377
26.3 Changing the order of integration 380
27. Differentiating Improper Integrals $\mathbf{3 8 6}$
27.1 Introduction 386
27.2 Pointwise vs. uniform convergence of integrals 387
27.3 Continuity theorem for improper integrals 390
27.4 Integrating and differentiating improper integrals 391
27.5 Differentiating the Laplace transform 393

Appendix

A. Sets, Numbers, and Logic 399
A. 0 Sets and numbers 399
A. 1 If-then statements 403
A. 2 Contraposition and indirect proof 406
A. 3 Counterexamples 408
A. 4 Mathematical induction 411
B. Quantifiers and Negation 418
B. 1 Introduction; Quantifiers 418
B. 2 Negation 42
B. 3 Examples involving functions 423
C. Picard's Method 427
C. 1 Introduction 427
C. 2 The Picard iteration theorems 428
C. 3 Fixed points 430
D. Applications to Differential Equations 434
D. 1 Introduction 434
D. 2 Discreteness of the zeros 435
D. 3 Alternation of zeros 437
D. 4 Reduction to normal form 439
D. 5 Comparison theorems for zeros 440
E. Existence and Uniqueness of ODE Solutions 445
E. 1 Picard's method of successive approximations 445
E. 2 Local existence of solutions to $y^{\prime}=f(x, y)$ 447
E. 3 The uniqueness of solutions 450
E. 4 Extending the existence and uniqueness theorems 452
Index 455

MIT OpenCourseWare
http://ocw.mit.edu

18.100A Introduction to Analysis

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

