
1.1 Introduction. Real numbers.
Mathematical analysis depends on the properties of the set R of real numbers,

so we should begin by saying something about it.
There are two familiar ways to represent real numbers. Geometrically, they

may be pictured as the points on a line, once the two reference points correspond-
ing to 0 and 1 have been picked. For computation, however, we represent a real
number as an infinite decimal, consisting of an integer part, followed by infinitely
many decimal places:

3.14159 . . . , −.033333 . . . , 101.2300000 . . . .

There are difficulties with decimal representation which we need to think
about. The first is that two different infinite decimals can represent the same real
number, for according to well-known rules, a decimal having only 9’s after some
place represents the same real number as a different decimal ending with all 0’s
(we call such decimals finite or terminating):

26.67999 . . . = 26.68000 . . . = 26.68 , −99.999 . . . = −100.

This ambiguity is a serious inconvenience in working theoretically with decimals.

Notice that when we write a finite decimal, in mathematics the infinite string of

decimal place zeros is dropped, whereas in scientific work, some zeros are retained to

indicate how accurately the number has been determined.

Another difficulty with infinite decimals is that it is not immediately obvious
how to calculate with them. For finite decimals there is no problem; we just follow
the usual rules—add or multiply starting at the right-hand end:

2.389 2.849
+ 2.389

. . . 78
× .09

. . . 41

But an infinite decimal has no right-hand end. . .
To get around this, instead of calculating with the infinite decimal, we use

its truncations to finite decimals, viewing these as approximations to the infinite
decimal. For instance, the increasing sequence of finite decimals

(1) 3, 3.1, 3.14, 3.141, 3.1415, . . .

gives ever closer approximations to the infinite decimal π = 3.1415926 . . . ; we say
that π is the limit of this sequence (a definition of “limit” will come soon).

To see how this allows us to calculate with infinite decimals, suppose for
instance we want to calculate

π + 3
√

2 .

We write the sequences of finite decimals which approximate these two numbers:

√π is the limit of 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . ;
3 2 is the limit of 1, 1.2, 1.25, 1.259, 1.2599, 1.25992, . . . ;

then we add together the successive decimal approximations:

π+3
√

2 is the limit of 4, 4.3, 4.39, 4.400, 4.4014, 4.40151, . . . ,

obtaining a sequence of numbers which also increases.
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Introduction to Analysis

The decimal representation of this increase isn’t as simple as it was for the
sequence representing π, since as each new decimal digit is added on, the earlier
ones may change. For instance, in the fourth step of the last row, the first decimal
place changes from 3 to 4. Nonetheless, as we compute to more and more places,
the earlier part of the decimals in this sequence ultimately doesn’t change any
more, and in this w√ay we get the decimal expansion of a new number; we then
define the sum π + 3 2 to be this number, 4.4015137 . . . .

We can define multiplication the same way. To get π × 3
√

2, for example,
multiply the two sequences above for these numbers, getting the sequence

(2) 3, 3.72, 3.9250, 3.954519, . . . .

Here too as we use more decimal places in the computation, the earlier part of the
numb
π 3

√ers in the sequence (2) ultimately stops changing, and we define the number
× 2 to be the limit of the sequence (2).

As the above shows, even the simplest operations with real numbers require
an understanding of sequences and their limits. These appear in analysis whenever
you get an answer not at once, but rather by making closer and closer approxima-
tions to it. Since they give a quick insight into some of the most important ideas
in analysis, they will be our starting point, beginning with the sequences whose
terms keep increasing (as in (1) and (2) above), or keep decreasing. In some ways
these are simpler than other types of sequences.

Appendix A.0 contains a brief review of set notation, and also describes the most

essential things about the different number systems we will be using: the integers,

rational numbers, and real numbers, as well as their relation to each other. Look

through it now just to make sure you know these things.

Questions 1.1
(Answers to the Questions for each section of this book can be found at the

end of the corresponding chapter.)
1. In the sequence above for π + 3

√
2, the first decimal place of the final

answer is not correct until four steps have been performed. Give an example of
addition where the first decimal place of the final answer is not correct until k
steps have been performed. (Here k is a given positive integer.)

1.4 Example: the number e

We saw in Section 1.1 how the notion of limit lets us define addition and
multiplication of positive real numbers. But it also gives us an important and
powerful method for constructing particular real numbers. This section and the
next give examples. They require some serious analytic thinking and give us our
first proofs.

The aim in each proof is to present an uncluttered, clear, and convincing
argument based upon what most readers already know or should be willing to
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accept as clearly true. The first proof for example refers explicitly to the binomial
theorem

k
(8) (1+x)k = 1+kx+ . . .+

( )

xi
k (

+ . . .+xn
k(k

, =
−1) · · · k−i+1)

,
i

(

i

)

i!

which you should know. But it also uses without comment the result
1 1 1 1

1 + + + + . . . +
2 4 8 2n

< 2,

which can be seen by picturing the successive points 1, 1 1

2
, 1 3

4
, . . . on the line. It

also follows from the formula for the geometric sum (taking r = 1/2):

1 + r + r2 1 rn+1

+ . . . + rn =
−

.
1 − r

If you didn’t think of the picture and didn’t remember or think of using the
formula, you will feel a step has been skipped. One person’s meat is another
person’s gristle; just keep chewing and it will ultimately go down.

As motivation for this first example, we recall the compound interest formula:
invest P dollars at the annual interest rate r, with the interest compounded at
equal time intervals n times a year; by the end of the year it grows to the amount

An = P
( r n

1 + .
n

)

Thus if we invest one dollar at the rate r = 1 (i.e., 100% annual interest), and
we keep recalculating the amount at the end of the year, each time doubling the
frequency of compounding, we get a sequence beginning with

A1 = 1 + 1 = 2 simple interest;

A2 = (1 + 1/2)2 = 2.25 compounded semiannually;

A4 = (1 + 1/4)4 ≈ 2.44 compounded quarterly.

Folk wisdom suggests that successive doubling of the frequency should steadily
increase the amount at year’s end, but within bounds, since banks do manage to
stay in business even when offering daily compounding. This should make the
following proposition plausible. (The limit is e.)

1 2
n

Proposition 1.4 The sequence an =
(

1 +
2n

)

has a limit.

Proof. By Theorem 1.3, it suffices to prove {an} is increasing and bounded
above.

To show it is increasing, if b = 0 we have b2 > 0, and therefore,

(1 + b)2 > 1 + 2b ;

raising both sides to the 2n power, we get

(1 + b)2·2
n

> (1 + 2b)2
n

.

If we now put b = 1/2n+1, this last inequality becomes an+1 > an . �

6
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Introduction to Analysis

To show that an is bounded above, we will prove a stronger statement

(“stronger” because it implies that an is bounded above: cf. Appendix A):

(9)
( 1
1 +

k

)k

≤ 3 for any integer k ≥ 1 .

To see this, we have by the binomial theorem (8),

( 1)k (1) k(k 1) (k i+1) 1 i k! 1 k

(10) 1 + = 1 + k + . . . +
− · · · −

k k i!

(

+ . . . + .
k

)

k!

(

k

)

To estimate the terms in the sum on the right, we note that

k(k − 1) · · · (k − i + 1) ≤ ki , i = 1, . . . , k ,

since there are i factors on the left, each at most k; and by similar reasoning,

1 1 1 1 1 i−1

(11) =
i! i

·
i

· · · · · ≤ , i = 2, . . . , k .− 1 2

(

2

)

Therefore, for i = 2, . . . , k (and i = 1 also, as you can check),

k(k − 1) · · · (k − i + 1)

i!
·
(1

k

)i 1
(12) ≤

2i−1
.

Using (12) to estimate the terms on the right in (10), we get, for k ≥ 2,

1 k 1 1 1
(13)

(

1 +
)

≤ 1 + 1 + + + . . . + ;
k 2 4 2k−1

≤ 1 + 2 ;

and this is true for k = 1 as well. ��

Remarks.

1. Euler was the first to encounter the number lim an; he named it e because
of its significance for the exponential function (or maybe after himself).

2. In the proof that an is increasing, the b could have been dispensed with,
and replaced from the start with 1/2n+1 . But this makes the proof harder to read,
and obscures the simple algebra. Also, for greater clarity the proof is presented
(as are many proofs) backwards from the natural procedure by which it would
have been discovered; cf. Question 1.4/1.

3. In the proof that an is bounded by 3, it is easy enough to guess from the
form of an that one should try the binomial theorem. Subsequent success then
depends on a good estimation like (12), which shows the terms of the sum (10)
are small. In general, this estimating lies at the very heart of analysis; it’s an art
which you learn by studying examples and working problems.

4. Notice how the three inequalities after line (10) as well as the two in line
(13) are lined up one under the other. This makes the proof much easier to read
and understand. When you write up your arguments, do the same thing: use
separate lines and line up the = and ≤ symbols, so the proof can be read as
successive transformations of the two sides of the equation or inequality.
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Questions 1.4

1. Write down the proof that the sequence an is increasing as you think you
would have discovered it. (In the Answers is one possibility, with a discussion of
the problems of writing it up. Read it.)

2. Define bn = 1 + 1/1! + 1/2! + 1/3! + . . . + 1/n! ; prove {bn} has a limit
(it is e). (Hint: study the second half of the proof of Prop. 1.4.)

3. In the proof that (1+1/k)k is bounded above, the upper estimate 3 could
be improved (i.e., lowered) by using more accurate estimates for the beginning
terms of the sum on the right side of (10). If one only uses the estimate (11) when
i ≥ 5, what new upper bound does this give for (1 + 1/k)k?

Exercises (The exercises go with the indicated section of the chapter.)

1.2

1. For each of the an below, tell if the sequence {an}, n ≥ 1, is increasing
(strictly?), decreasing (strictly?), or neither; show reasoning.

(If simple inspection fails, try considering the difference an+1 an, or the
ratio an n

−
+1/a , or relate the sequence to the values of a function f(x) known to

be increasing or decreasing.)

(a) 1 − 1 + 1 − . . . + (−1)n−1 1

2 3 n
(b) n/(n + 1)

n n

(c)
∑

sin2 k (d) sin k
1

∑

1

(e) tan (1/n) (f)
√

1 + 1/n2

1.4

1. Consider the sequence {an}, where

1 1 1 1
an = 1 + + + + . . . + .

1 · 3 1 · 3 · 5 1 · 3 · 5 · 7 1 · 3 · . . . · (2n − 1)

Decide whether {an} is bounded above or not, and prove your answer is correct.
(Hint: cf. Question 1.4/2 .)

2. Prove the sequence a n
n = n /n!, n ≥ 1, is

(a) increasing; (b) not bounded above (show an ≥ n).
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Introduction to Analysis

2.3 Proving boundedness.

Rather than an upper and lower estimate, often you want an estimate just
in one direction. This was the case with our work with sequences in Sections 1.4
and 1.5. Using the language of estimations, we summarize the principles used
there; for simplicity, we assume the sequences are non-negative: an ≥ 0 .

To show {an} is bounded above, get one upper estimate: an ≤ B, for all n;

to show {an} is not bounded above, get a lower estimate for each term:

an ≥ Bn, such that Bn tends to ∞ as n → ∞.

The method for showing unboundedness is rather restricted, but it’s good enough

most of the time. We will give a precise definition of “tend to ∞” in the next chapter;

for now we will use it intuitively. The examples we gave in Sections 1.4 and 1.5 illustrate

these principles.

1 k

Example 1.4 (9) bk =
(

1 +
k

)

.

We showed {bk} bounded above by the upper estimate: bk < 3 for all k.

1 1 1
Example 1.5A an = 1 + + + . . . + .

2 3 n
Here we showed {an} was not bounded above, by proving the lower estimate

an > ln(n + 1), and relying on the known fact that ln n tends to ∞ as n → ∞.

These examples show that to estimate, you may have to first decide what
kind of estimate you are looking for: upper or lower. If you aren’t told this in
advance, deciding may not be so easy. For example, by using the rectangles in
Example 1.5A a bit differently, we could easily have obtained the upper estimate

an < 1 + ln(n + 1)

for the terms of the sequence. But this would have been useless for showing the
sequence was unbounded, since the estimate goes in the wrong direction. Nor
does it show the sequence is bounded, since the estimate 1 + ln(n + 1) depends
on n and tends to ∞, instead of being the same for all the terms.

As another example of the difficulty in deciding which type of estimate to look

for, consider the sequence formed like the one above in Example 1.5, but using only

the prime numbers in the denominators (here pn denotes the n-th prime):

an = 1/2 + 1/3 + 1/5 + 1/7 + 1/11 + . . . + 1/pn .

Should we look for an upper estimate that will show it is bounded, or a lower

estimate that clearly tends to infinity? Anyone who can answer this without having

studied number theory is a mathematical star of zeroth magnitude.

Questions 2.3

1. Let a = 1 + 1 + 1 1
n 4 9

+ . . . +
n2 ; is it bounded or unbounded; i.e., should

one look for an upper or a lower estimate for the an? (cf. Example 1.5A)
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2.6 The terminology “for n large”.

In estimating or approximating the terms of a sequence {an}, sometimes the
estimate is not valid for all terms of the sequence; for example, it might fail for
the first few terms, but be valid for the later terms. In such a case, one has to
specify the values of n for which the estimate holds.

5n
Example 2.6A Let an =

2
, n 2;

n − 2
≥ for what n is |an| < 1?

Solution. For n = 1, the estimate is not valid; if n > 1, then an is positive, so
we can drop the absolute value. Then we have

5n 2
2

< 1 ⇔ 5n < n2 n− 2
− 2 ⇔ 5 <

n
− ,

n
and by inspection, one sees this last inequality holds for all n ≥ 6. �

n2 + 2n
Example 2.6B In the sequence an =

2
, for what n is a

n − n
2

≈ 1 ?
.1

n2 + 2n 2n + 2
Solution.

∣

2 − 2
− 1

n

∣

∣ ∣

∣ ∣ =
∣ ∣ n2

,− 2
1

which is <
10

⇔ n(n − 20) > 22 ,

and by inspection, this last inequality holds for all n ≥ 22. �

The above is a good illustration of Warning 2.4. To show an and 1 are close,

we get a small upper estimate of the difference by first transforming it algebraically;

trying instead to use the triangle inequality, in either the sum or difference form, would

produce nothing useful.

As the above examples illustrate, sometimes a property of a sequence an is
not true for the first few terms, but only starts to hold after a certain place in
the sequence. In this case, a special terminology is used.

Definition 2.6 The sequence {an} has property P for n large if

(10) there is a number N such that an has property P for all n ≥ N .

One can say instead for large n, for n sufficiently large, etc. Most of the time
we will use the symbolic notation for n � 1 , which can be read in any of the
above ways.

Note that in the definition, N need not be an integer.

To illustrate the definition, Examples 2.6A and 2.6B show, respectively:
5n

if an =
n2

, then |a | < 1 for n � 1 ;

2

− n
2

n + 2n
if an =

n2
, then

2
|an| ≈ 1 for n .

.1
� 1−
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Introduction to Analysis

In both examples, we gave the smallest integer value of N (it was 6 and 22,
respectively), such that the stated property of an held for all n ≥ N . In general,
this is overkill: to show something is true for n large, one only has to give some

number N which works, not the “best possible” N . And as we said, it need not
be an integer.

The symbols a � b, with a, b > 0, have the meaning “a is relatively large

compared with b”, that is, a/b is large. Thus we do not write “for n � 0”;

intuitively, every positive integer is relatively large compared with 0.

Example 2.6C Show the sequence {sin 10/n} is decreasing for large n.

Proof. The function sin x is increasing on the interval 0 < x < π/2, i.e.,

a < b ⇒ sin a < sin b, for 0 < a < b < π/2 .

Thus
10 10 10 π 20

sin < sin , if < , i.e., if n > . �
n + 1 n n 2 π

Remarks. This completes the argument, since it shows we can use N = 20/π.
If you prefer an integer value, take N = 7, the first integer after 20/π.

In this example, it was no trouble to find the exact integer value N = 7
at which the sequence starts to be decreasing. However this is in general not
necessary. Any value for N greater than 7 would do just as well in showing the
sequence is decreasing for large n.

Thus, for example, if it turned out for some sequence an that
an+1 < an if n2 + n > 100 ,

to show the sequence is decreasing for large n, it is a waste of time to solve the
quadratic equation n2 + n = 100; by inspection one sees that if n ≥ 10, then
n2 + n > 100, so that one can take N = 10.

3.1 Definition of limit.
In Chapter 1 we discussed the limit of sequences that were monotone; this

restriction allowed some short-cuts and gave a quick introduction to the concept.
But many important sequences are not monotone—numerical methods, for in-
stance, often lead to sequences which approach the desired answer alternately
from above and below. For such sequences, the methods we used in Chapter 1
won’t work. For instance, the sequence

1.1, .9, 1.01, .99, 1.001, .999, . . .

has 1 as its limit, yet neither the integer part nor any of the decimal places of the
numbers in the sequence eventually becomes constant. We need a more generally
applicable definition of the limit.

We abandon therefore the decimal expansions, and replace them by the ap-
proximation viewpoint, in which “the limit of {an} is L” means roughly

an is a good approximation to L , when n is large.

The following definition makes this precise. After the definition, most of the
rest of the chapter will consist of examples in which the limit of a sequence is
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calculated directly from this definition. There are “limit theorems” which help in
determining a limit; we will present some in Chapter 5. Even if you know them,
don’t use them yet, since the purpose here is to get familiar with the definition.

Definition 3.1 The number L is the limit of the sequence {an} if

(1) given ε > 0, an ≈L for n
ε

� 1.

If such an L exists, we say {an} converges, or is convergent; if not, {an} diverges,
or is divergent. The two notations for the limit of a sequence are:

lim
n→∞

{an} = L ; an → L as n → ∞ .

These are often abbreviated to: lim an = L or an → L.

Statement (1) looks short, but it is actually fairly complicated, and a few
remarks about it may be helpful. We repeat the definition, then build it in three
stages, listed in order of increasing complexity; and with each, an English version.

Definition 3.1 lim an = L if: given ε > 0, an ≈L for n
ε

� 1.

Building this up in three succesive stages:

(i) an ≈L (an approximates L to within ε);
ε

(

the approximation holds for all a
(ii) an ≈L for n

ε

� 1 n

far enough out in the sequence;

)

;

(iii) given ε > 0, an ≈L for n
ε

� 1

(the approximation can be made as close as desired, pro-
vided we go far enough out in the sequence—the smaller
ε is, the farther out we must go, in general).

The heart of the limit definition is the approximation (i); the rest consists of
the if’s, and’s, and but’s. First we give an example.

n 1
Example 3.1A Show lim

−
= 1 , directly from definition 3.1.

n→∞ n + 1

Solution. According to definition 3.1, we must show:
n

(2) given ε > 0,
− 1 ≈ 1 for n � 1 .

n + 1 ε

We begin by examining the size of the difference, and simplifying it:
∣

∣n − 1 −2 2
∣

n + 1
− 1

∣ ∣

∣ =

∣

∣ ∣ ∣

∣ = .
∣ ∣ ∣n + 1 n + 1

We want to show this difference is small if n

∣

�
∣

1. Use the inequality laws:
2 2 2

< ε if n + 1 > , i.e., if n > N, where N =
n + 1 ε ε

− 1 ;

this proves (2), in view of the definition (2.6) of “for n � 1”. �

Writing it on one line (ungrammatical, but easier to write and read this way):
∣

∣n − 1
∣

2
Solution. Given ε > 0,

∣ 2
∣ − 1∣ = < ε, if n >
∣n + 1 ∣ n + 1 ε

− 1 . �
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Introduction to Analysis

Remarks on limit proofs.

1. The heart of a limit proof is in the approximation statement, i.e., in
getting a small upper estimate for |an − L|. Often most of the work will consist
in showing how to rewrite this difference so that a good upper estimate can be
made. (The triangle inequality may or may not be helpful here.)

Note that in doing this, you must use | |; you can drop the absolute value
signs only if it is clear that the quantity you are estimating is non-negative.

2. In giving the proof, you must exhibit a value for the N which is lurking in
the phrase “for n � 1”. You need not give the smallest possible N ; in example
3.1A, it was 2/ε− 1, but any bigger number would do, for example N = 2/ε.

Note that N depends on ε: in general, the smaller ε is, the bigger N is, i.e.,
the further out you must go for the approximation to be valid within ε .

3. In Definition 3.1 of limit, the phrase “given ε > 0” has at least five
equivalent forms; by convention, all have the same meaning, and any of them can
be used. They are:

for all ε > 0 , for every ε > 0 , for any ε > 0 ;
given ε > 0 , given any ε > 0 .

The most standard of these phrases is “for all ε > 0”, but we feel that if
you are meeting (1) for the first time, the phrases in the second line more nearly
capture the psychological meaning. Think of a limit demon whose only purpose in
life is to make it hard for you to show that limits exist; it always picks unpleasantly
small values for ε. Your task is, given any ε the limit demon hands you, to find a
corresponding N (depending on ε) such that an ≈L for n > N .

ε

Remember: the limit demon supplies the ε; you cannot choose it yourself.

4. In writing up the proof, good mathematical grammar requires that you
write “given ε > 0” (or one of its equivalents) at the beginning; get in the habit
now of doing it. We will discuss this later in more detail; briefly, the reason is
that the N depends on ε, which means ε must be named first.

Example 3.1B Show lim (
√

n + 1 =
n

√
− n) 0 . (This one’s tricky.)

→∞

A2 − B2

Solution. We use the identity A − B = , which tells us that
A + B

(3)
∣ 1 1
∣(
√

n + 1
√

− n)
∣

∣ = √
n + 1 +

√ <
n 2

√ ;
n

1 1 1
given ε > 0, √ < ε if < ε2, i.e., if n > . �

2 n 4n 4ε2

Note that here we need not use absolute values since all the quantities are positive.

It is not at all clear how to estimate the size of
√

n + 1
√− n; the triangle inequality

is useless. Line (3) is thus the key step in the argument: the expression must first

be transformed by using the identity. Even after doing this, line (3) gives a further

simplifying inequality to make finding an N easier; just try getting an N without this

step! The simplification means we don’t get the smallest possible N ; who cares?
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Questions 3.1

1. Directly from the definition of limit (i.e., without using theorems about
limits you learned in calculus), prove that

n cosna
(a)

+ 1
→ 1 (b)

n n
→ 0 (a is a fixed number)

n2 + 1 n2 (

cf. Example 3.1B: make
(c)

n2 − 1
→ 1 (d)

n3 + 1
→ 0

a simplifying inequality

)

2. Prove that, for any sequence {an}, lim an = 0 ⇔ lim |an| = 0.

(This is a simple but important fact you can use from now on.)

3. Why does the definition of limit say ε > 0, rather than ε ≥ 0 ?

3.2 The uniqueness of limits. The K-ε principle.

Can a sequence have more than one limit? Common sense says no: if there
were two different limits L and L′, the an could not be arbitrarily close to both,
since L and L′ themselves are at a fixed distance from each other. This is the idea
behind the proof of our first theorem about limits. The theorem shows that if
{an} is convergent, the notation lim an makes sense; there’s no ambiguity about
the value of the limit. The proof is a good exercise in using the definition of limit
in a theoretical argument. Try proving it yourself first.

Theorem 3.2A Uniqueness theorem for limits.

A sequence an has at most one limit: an → L and an → L′ ⇒ L = L′.

Proof. By hypothesis, given ε > 0,

an ≈ L for n � 1, and an ≈ L′ for n
ε ε

� 1.

Therefore, given ε > 0, we can choose some large number k such that

L ≈ ak
ε

≈ L′ .
ε

By the transitive law of approximation (2.5 (8)), it follows that

(4) given ε > 0, L ≈ L′ .
2ε

To conclude that L = L′, we reason indirectly (cf. Appendix A.2).

Suppose L = L′; choose ε = 1

2
|L − L′|. We then have

|L − L′| < 2ε, by (4); i.e.,

|L − L′| < |L − L′|, a contradiction. �

Remarks.

1. The line (4) says that the two numbers L and L′ are arbitrarily close. The
rest of the argument says that this is nonsense if L = L′, since they cannot be
closer than |L − L′|.

6

6
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2. Before, we emphasized that the limit demon chooses the ε; you cannot
choose it yourself. Yet in the proof we chose ε = 1

2
|L − L′|. Are we blowing hot

and cold?
The difference is this. Earlier, we were trying to prove a limit existed, i.e.,

were trying to prove a statement of the form:
given ε > 0, some statement involving ε is true.

To do this, you must be able to prove the truth no matter what ε you are given.
Here on the other hand, we don’t have to prove (4)—we already deduced it

from the hypothesis. It’s a true statement. That means we’re allowed to use it,
and since it says something is true for every ε > 0, we can choose a particular
value of ε and make use of its truth for that particular value.

To reinforce these ideas and give more practice, here is a second theorem
which makes use of the same principle, also in an indirect proof. The theorem is
“obvious” using the definition of limit we started with in Chapter 1, but we are
committed now and for the rest of the book to using the newer Definition 3.1 of
limit, and therefore the theorem requires proof.

Theorem 3.2B {an} increasing, L = lim an ⇒ an ≤ L for all n;

{an} decreasing, L = lim an ⇒ an ≥ L for all n.

Proof. Both cases are handled similarly; we do the first.

Reasoning indirectly, suppose there were a term aN of the sequence such that
aN > L. Choose ε = 1

N n2
(a − L). Then since {a } is increasing,

an − L ≥ aN − L > ε, for all n ≥ N ,

contradicting the Definition 3.1 of L = lim an. �

The K-ε principle.

In the proof of Theorem 3.2A, note the appearance of 2ε in line (4). It often
happens in analysis that arguments turn out to involve not just ε but a constant
multiple of it. This may occur for instance when the limit involves a sum or
several arithmetic processes. Here is a typical example.

1 sin n
Example 3.2 Let an = + . Show an

n n + 1
→ 0, from the definition.

Solution To show an is small in size, use the triangle inequality:
∣ ∣

∣ 1 sin n ∣ 1
∣ +

∣ ∣

∣ sin≤
∣ n

+

∣

.
+

∣

t t,

∣n n 1 n

∣

∣

n + 1

A this poin the natural thing to

∣ ∣ ∣ ∣ ∣

∣

do is

∣

to

∣

make

∣

the separate

∣

estimations
∣

∣ 1
∣

∣

∣n

∣ 1 sinn 1
∣ < ε, for n > ; < ε, for n > 1 ;
∣ ε

∣

∣

∣ ∣

∣

∣n + 1

∣

∣ ε
−

so that, given ε > 0,
∣ ∣

∣ 1 sin n ∣ 1
∣ + ∣ < 2ε , for n > .

This is close, but we were

∣n n + 1 ∣ ε

supposed to show |an| < ε. Is 2ε just as good?
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The usual way of handling this would be to start with the given ε, then put
ε′ = ε/2, and give the same proof, but working always with ε′ instead of ε. At
the end, the proof shows

∣

∣ 1 sin n
∣

∣

′
1

and since 2ε′ = ε, the limit

∣ + , for n >
n ε′

;
∣ + 1

∣ < 2ε
n

definition

∣

is satisfied.

Instead of doing this, let’s once and for all agree that if you come out in the
end with 2ε, or 22ε, that’s just as good as coming out with ε. If ε is an arbitrary
small number, so is 22ε. Therefore, if you can prove something is less than 22ε,
you have shown that it can be made as small as desired.

We formulate this as a general principle, the “K-ε principle”. This isn’t a
standard term in analysis, so don’t use it when you go to your next mathematics
congress, but it is useful to name an idea that will recur often.

Principle 3.2 The K-ε principle.

Suppose that {an} is a given sequence, and you can prove that

(5) given any ε > 0, an
K

≈ L for n
ε

� 1 ,

where K > 0 is a fixed constant, i.e., a number not depending on n or ε.

Then lim an = L .
n→∞

The K-ε principle is here formulated for sequences, but we will use it for a variety

of other limits as well. In all of these uses, the essential point is that K must truly be

a constant, and not depend on any of the variables or parameters.

Questions 3.2

1. In the last (indirect) part of the proof of the Uniqueness Theorem, where
did we use the hypothesis L = L′?

2. Show from the definition of limit that if an → L, then can → cL, where
c is a fixed non-zero constant. Do it both with and without the K-ε principle.

2
3. Show from the definition of limit that

( 1
lim

n + 1
−

n − 1

)

= 0 .

6
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Introduction to Analysis

3.5 Writing limit proofs.

Get in the habit of writing your limit proofs using correct mathematical
grammar. The proofs in the body of the text and some of the answers to questions
(those answers which aren’t just brief indications) are meant to serve as models.
But it may also help to point out some common errors.

One frequently sees the following usages involving “for n large” on student
papers. Your teacher may know what you mean, but the mathematical grammar
is wrong, and technically, they make no sense; avoid them.

Wrong Right

an → 0 for n � 1; an → 0 as n → ∞;

lim 2n = ∞ for n � 1; lim 2n = ∞;

lim(1/n) = 0;
lim(1/n) = 0 if n > 1/ε;

{

(1/n)≈ 0 if n > 1/ε.
ε

In the first two, the limit statement applies to the sequence as a whole,
whereas “for n > some N” can only apply to individual terms of the sequence.
The third is just a general mess; two alternatives are offered, depending on what
was originally meant.

As we said earlier, “given ε > 0” or “given M > 0” must come first:

Poor: 1/n < ε, for n � 1 (what is ε, and who picked it?)

Wrong: For n � 1, given ε > 0, 1/n < ε.

This latter statement is wrong, because according to mathematical conventions,
it would mean that the N concealed in “for n � 1” should not depend on ε. This
point is more fully explained in Appendix B; rather than try to study it there at
this point, you will be better off for now just remembering to first present ε or
M , and then write the rest of the statement.

Another point: write up your arguments using plenty of space on your paper
(sorry, clarity is worth a tree). Often in the book’s examples and proofs, the
inequality and equality signs are lined up below each other, rather than strung
out on one line; it is like properly-written computer code. See how it makes the
argument clearer, and imitate it in your own work. If equalities and inequalities
both occur, the convention we will follow is:

A < n(n + 1) A < n(n + 1)
rather

= n2
than

+ n , < n2 + n .

The form on the right doesn’t tell you explicitly where the second line came from;
in the form on the left, the desired conclusion A < n2 + n isn’t explicitly stated,
but it is easily inferred.
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3.6 Some limits involving integrals.

To broaden the range of applications and get you thinking in some new
directions, we look at a different type of limit which involves definite integrals.

Example 3.6A Let an =

∫ 1

(x2 + 2)ndx . Show that lim an =
n→∞

0

∞.

The way not to do this is to try to evaluate the integral, which would just produce

an unwieldy expression in n that would be hard to interpret and estimate. To show

that the integral tends to infinity, all we have to do is get a lower estimate for it that

tends to infinity.

Solution. We estimate the integral by estimating the integrand.

x2 + 2 ≥ 2 for all x;

therefore, (x2 + 2)n ≥ 2n for all x and all n ≥ 0.
∫ 1 1

Thus (x2 + 2)ndx ≥ 2ndx = 2n .
0

∫

0

Since lim 2n = ∞ by Theorem 3.4, the definite integral must tend to also:
∫ 1

∞

given M > 0, (x2 + 2)ndx
0

≥ 2n ≥ M, for n > log2 M. �

1

Example 3.6B Show lim
n→∞

∫

(x2 + 1)ndx =
0

∞.

Solution. Once again, we need a lower estimate for the integral that is large.
The previous argument gives the estimate (x2 + 1)n ≥ 1n = 1, which is useless.
However, it may be modified as follows.

Since x2 + 1 is an increasing function which has the value A = 5/4 at the
point x = .5 (any other point on (0, 1) would do just as well), we can say

x2 + 1 ≥ A > 1 for .5 ≤ x ≤ 1;

therefore, (x2 + 1)n ≥ An for .5 ≤ x ≤ 1;

since lim An = ∞ by Theorem 3.4, the definite integral must tend to ∞ also:

given M > 0,

∫ 1 n

(x2 + 1)ndx ≥
∫ 1

An
A

dx = M
0 .5 2

≥ , for n large. �

Questions 3.6

1
∫ 1 x2 + 1

1. By estimating the integrand, show that:
3
≤

0 x4
dx

+ 2
≤ 1 .

1

2. Show without integrating that lim
n→∞

∫

xn(1
0

− x)ndx = 0 .
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Exercises
3.6 1. Modeling your arguments on the two examples given in this section,
prove the following without attempting to evaluate the integrals explicitly.

3

(a) lim

∫ 2

lnn x dx = 0 (b) lim
n→∞ n→∞

1

∫

lnn x dx =
2

∞ .

1

3.7 Show lim

∫

(1 − x2)n = 0 by estimation, as in Example 3.7.
n→∞

0

Problems

3-1 Let {an} be a sequence and {bn} be its sequence of averages:

bn = (a1 + . . . + an)/n (cf. Problem 2-1).

(a) Prove that if an → 0, then bn → 0 .

(Hint: this uses the same ideas as example 3.7. Given ε > 0, show how to
break up the expression for bn into two pieces, both of which are small, but for
different reasons.)

(b) Deduce from part (a) in a few lines without repeating the reasoning
that if an → L, then also bn → L .

3-2 To prove an was large if a > 1, we used “Bernoulli’s inequality”:

(1 + h)n ≥ 1 + nh, if h ≥ 0 .

We deduced it from the binomial theorem. This inequality is actually valid for
other values of h however. A sketch of the proof starts:

(1 + h)2 = 1 + 2h + h2 ≥ 1 + 2h, since h2 ≥ 0 for all h;

(1 + h)3 = (1 + h)2(1 + h) (1 + 2h)(1 + h), by the previous case,

= 1 + 3h + 2h2

≥
,

≥ 1 + 3h .

(a) Show in the same way that the truth of the inequality for the case n
implies its truth for the case n + 1. (This proves the inequality for all n by
mathematical induction, since it is trivially true for n = 1.)

(b) For what h is the inequality valid? (Try it when h = −3, n = 5.)
Reconcile this with part (a).

3-3 Prove that if an is a bounded increasing sequence and lim an = L in the
sense of Definition 1.3A, then lim an = L in the sense of Definition 3.1.

3-4 Prove that a convergent sequence {an} is bounded.

3-5 Given any c ∈ R, prove there is a strictly increasing sequence

n

{an} and
a strictly decreasing sequence {b }, both of which converge to c, and such that
all the an and bn are: (i) rational numbers; (ii) irrational numbers.

(Theorem 2.5 is helpful).
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